1. Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore design
- Author
-
Amandine Magnaudeix, Marie Lasgorceix, Urda Rüdrich, Thierry Chartier, Patricia Pascaud-Mathieu, Eric Champion, Chantal Damia, Joël Brie, IRCER - Axe 4 : céramiques sous contraintes environnementales (IRCER-AXE4), Institut de Recherche sur les CERamiques (IRCER), Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IRCER - Axe 1 : procédés céramiques (IRCER-AXE1), Service de Chirurgie maxillo-faciale, réparatrice et stomatologie [CHU Limoges], and CHU Limoges
- Subjects
Ceramics ,Silicon ,Scaffold ,Materials science ,Cell Survival ,Bioengineering ,Rhombus ,02 engineering and technology ,010402 general chemistry ,Porous silicon ,01 natural sciences ,Cell Line ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Biomaterials ,Mice ,Cell Adhesion ,Animals ,Osteoblast cell ,Ceramic ,Composite material ,Porosity ,Cell adhesion ,ComputingMilieux_MISCELLANEOUS ,Cell Proliferation ,Principal Component Analysis ,Osteoblasts ,Macropore ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Actin Cytoskeleton ,Durapatite ,Mechanics of Materials ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology - Abstract
Silicate-substituted hydroxyapatite scaffolds containing multiscale porosity are manufactured. Model parts containing macropores of five cross-sectional geometries (circle, square, rhombus, star and triangle) and two sizes are shaped by microstereolithography. Three open microporosity contents (0.5, 23 or 37 vol%) are introduced in the ceramic. MC3T3-E1 pre-osteoblasts are seeded onto these scaffolds. Analysis of cell colonization inside the macropores after 7 and 14 days of cultivation shows that the cellular filling is proportional to the macropore size and strongly influenced by macropore shape. Straight edges and convex surfaces are detrimental. High aspect ratios, the absence of reentrant angles and the presence of acute angles, by creating concavities and minimizing flat surfaces, facilitate cell colonization. Rhombus and triangle cross-sections are thus particularly favorable, while square and star geometries are the least favored. An increase in the microporosity content strongly impairs cell growth in the macropores. The data are statistically analyzed using a principal components analysis that shows that macro- and microtopographical parameters of scaffolds must be collectively considered with correlated interactions to understand cell behavior. The results indicate the important cell sensing of topography during the initial step of cell adhesion and proliferation and evidence the need for an optimized scaffold design.
- Published
- 2019
- Full Text
- View/download PDF