1. Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea
- Author
-
Vincent Michel, Mélanie Tobin, Atitheb Chaiyasitdhi, Pascal Martin, Nicolas Michalski, Laboratoire Physico-Chimie Curie [Institut Curie] (PCC), Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Génétique et Physiologie de l'Audition, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), French National Research Agency (ANR-11-BSV5-011)French National Research Agency (ANR-16-CE13-0015)European Union Horizon 2020 (Marie Sklodowska-Curie grant No 66600)Labex Celltisphybio part of the Idex PSL (ANR-10-LABX-0038), ANR-11-BSV5-0011,EARMEC,Propriétés mécaniques, actives et passives, de la touffe ciliaire des cellules mécano-sensorielles ciliées le long de l'axe tonotopique de la cochlée des mammifères.(2011), ANR-16-CE13-0015,HAIRBUNDLEMORPH,Contrôle de la taille de la touffe ciliaire des cellules mécanosensorielles ciliées pour une détection auditive sélective en fréquence(2016), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), michalski, nicolas, BLANC - Propriétés mécaniques, actives et passives, de la touffe ciliaire des cellules mécano-sensorielles ciliées le long de l'axe tonotopique de la cochlée des mammifères. - - EARMEC2011 - ANR-11-BSV5-0011 - BLANC - VALID, Contrôle de la taille de la touffe ciliaire des cellules mécanosensorielles ciliées pour une détection auditive sélective en fréquence - - HAIRBUNDLEMORPH2016 - ANR-16-CE13-0015 - AAPG2016 - VALID, Initiative d'excellence - Paris Sciences et Lettres - - PSL2010 - ANR-10-IDEX-0001 - IDEX - VALID, Physico-Chimie-Curie (PCC), and Institut Curie [Paris]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,cochlea ,MESH: Rats, Sprague-Dawley ,Mechanotransduction, Cellular ,Rats, Sprague-Dawley ,neuroscience ,0302 clinical medicine ,physics of living systems ,MESH: Cochlea ,rat ,MESH: Animals ,Biology (General) ,tonotopy ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,MESH: Stress, Mechanical ,integumentary system ,Chemistry ,Tension (physics) ,General Neuroscience ,Stiffness ,General Medicine ,Biomechanical Phenomena ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,medicine.anatomical_structure ,frequency selectivity ,Sound analysis ,Medicine ,Hair cell ,medicine.symptom ,Tonotopy ,Transduction (physiology) ,Mechanoreceptors ,Research Article ,QH301-705.5 ,MESH: Biomechanical Phenomena ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Science ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,hair cell ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,medicine ,otorhinolaryngologic diseases ,Animals ,Cochlea ,030304 developmental biology ,General Immunology and Microbiology ,MESH: Mechanotransduction, Cellular ,[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,hair bundle ,MESH: Mechanoreceptors ,hearing ,Biophysics ,Stress, Mechanical ,sense organs ,Tip link ,030217 neurology & neurosurgery - Abstract
International audience; Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell's mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca 2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.
- Published
- 2019
- Full Text
- View/download PDF