1. Piezo1 regulates cholesterol biosynthesis to influence neural stem cell fate during brain development
- Author
-
Nourse, Jamison L, Leung, Vivian M, Abuwarda, Hamid, Evans, Elizabeth L, Izquierdo-Ortiz, Esmeralda, Ly, Alan T, Truong, Nguyen, Smith, Samantha, Bhavsar, Harsh, Bertaccini, Gabriella, Monuki, Edwin S, Panicker, Mitradas M, and Pathak, Medha M
- Subjects
Biochemistry and Cell Biology ,Biological Sciences ,Brain Disorders ,Stem Cell Research ,Neurosciences ,Stem Cell Research - Nonembryonic - Non-Human ,1.1 Normal biological development and functioning ,Aetiology ,2.1 Biological and endogenous factors ,Underpinning research ,Neurological ,Animals ,Brain ,Cholesterol ,Ion Channels ,Mechanotransduction ,Cellular ,Mice ,Mice ,Knockout ,Neural Stem Cells ,Physiology ,Medical Physiology ,Biochemistry and cell biology ,Zoology ,Medical physiology - Abstract
Mechanical forces and tissue mechanics influence the morphology of the developing brain, but the underlying molecular mechanisms have been elusive. Here, we examine the role of mechanotransduction in brain development by focusing on Piezo1, a mechanically activated ion channel. We find that Piezo1 deletion results in a thinner neuroepithelial layer, disrupts pseudostratification, and reduces neurogenesis in E10.5 mouse embryos. Proliferation and differentiation of Piezo1 knockout (KO) mouse neural stem cells (NSCs) isolated from E10.5 embryos are reduced in vitro compared to littermate WT NSCs. Transcriptome analysis of E10.5 Piezo1 KO brains reveals downregulation of the cholesterol biosynthesis superpathway, in which 16 genes, including Hmgcr, the gene encoding the rate-limiting enzyme of the cholesterol biosynthesis pathway, are downregulated by 1.5-fold or more. Consistent with this finding, membrane lipid composition is altered, and the cholesterol levels are reduced in Piezo1 KO NSCs. Cholesterol supplementation of Piezo1 KO NSCs partially rescues the phenotype in vitro. These findings demonstrate a role for Piezo1 in the neurodevelopmental process that modulates the quantity, quality, and organization of cells by influencing cellular cholesterol metabolism. Our study establishes a direct link in NSCs between PIEZO1, intracellular cholesterol levels, and neural development.
- Published
- 2022