1. Redox-sensitive calcium/calmodulin-dependent protein kinase IIα in angiotensin II intra-neuronal signaling and hypertension.
- Author
-
Basu U, Case AJ, Liu J, Tian J, Li YL, and Zimmerman MC
- Subjects
- Amino Acids metabolism, Animals, Blood Pressure drug effects, Brain drug effects, Brain metabolism, Cell Line, Hypertension drug therapy, Male, Mice, Mice, Inbred C57BL, Mutation drug effects, Potassium Channels metabolism, Reactive Oxygen Species metabolism, Subfornical Organ drug effects, Subfornical Organ metabolism, Superoxide Dismutase metabolism, Angiotensin II pharmacology, Calcium metabolism, Calcium-Calmodulin-Dependent Protein Kinase Type 2 metabolism, Hypertension metabolism, Neurons drug effects, Oxidation-Reduction drug effects, Signal Transduction drug effects
- Abstract
Dysregulation of brain angiotensin II (AngII) signaling results in modulation of neuronal ion channel activity, an increase in neuronal firing, enhanced sympathoexcitation, and subsequently elevated blood pressure. Studies over the past two decades have shown that these AngII responses are mediated, in part, by reactive oxygen species (ROS). However, the redox-sensitive target(s) that are directly acted upon by these ROS to execute the AngII pathophysiological responses in neurons remain unclear. Calcium/calmodulin-dependent protein kinase II (CaMKII) is an AngII-activated intra-neuronal signaling protein, which has been suggested to be redox sensitive as overexpressing the antioxidant enzyme superoxide dismutase attenuates AngII-induced activation of CaMKII. Herein, we hypothesized that the neuronal isoform of CaMKII, CaMKII-alpha (CaMKIIα), is a redox-sensitive target of AngII, and that mutation of potentially redox-sensitive amino acids in CaMKIIα influences AngII-mediated intra-neuronal signaling and hypertension. Adenoviral vectors expressing wild-type mouse CaMKIIα (Ad.wtCaMKIIα) or mutant CaMKIIα (Ad.mutCaMKIIα) with C280A and M281V mutations were generated to overexpress either CaMKIIα isoform in mouse catecholaminergic cultured neurons (CATH.a) or in the brain subfornical organ (SFO) of hypertensive mice. Overexpressing wtCaMKIIα exacerbated AngII pathophysiological responses as observed by a potentiation of AngII-induced inhibition of voltage-gated K
+ current, enhanced in vivo pressor response following intracerebroventricular injection of AngII, and sensitization to chronic peripheral infusion of AngII resulting in a more rapid increase in blood pressure. In contrast, expressing the mutant CaMKIIα in CATH.a neurons or the SFO failed to intensify these AngII responses. Taken together, these data identify neuronal CaMKIIα as a redox-sensitive signaling protein that contributes to AngII-induced neuronal activation and hypertension., (Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF