4 results on '"Mims, Alice"'
Search Results
2. TP-0903 Is Active in Preclinical Models of Acute Myeloid Leukemia with TP53 Mutation/Deletion.
- Author
-
Eisenmann, Eric D., Stromatt, Jack C., Fobare, Sydney, Huang, Kevin M., Buelow, Daelynn R., Orwick, Shelley, Jeon, Jae Yoon, Weber, Robert H., Larsen, Bill, Mims, Alice S., Hertlein, Erin, Byrd, John C., and Baker, Sharyn D.
- Subjects
BIOLOGICAL models ,IN vitro studies ,GENETIC mutation ,XENOGRAFTS ,DNA ,IN vivo studies ,PROTEIN kinase inhibitors ,PHOSPHOTRANSFERASES ,ANIMAL experimentation ,ANTINEOPLASTIC agents ,APOPTOSIS ,CELL cycle proteins ,CELL survival ,IMMUNOBLOTTING ,DECITABINE ,TUMOR suppressor genes ,RESEARCH funding ,CELL lines ,MICE ,OVERALL survival ,PHARMACODYNAMICS - Abstract
Simple Summary: Acute myeloid leukemia (AML) with mutations in the tumor suppressor gene TP53 is rapidly lethal for most patients. Here, we investigated the preclinical activity of TP-0903, a multikinase inhibitor that inhibits kinases with potential synthetical lethality in TP53 mutant AML. TP-0903 inhibited cell viability and induced apoptosis in multiple TP53 mutant AML cell lines at nanomolar concentrations in vitro. TP-0903, both alone and in combination with decitabine, the current standard of care, improved survival in two xenograft models of TP53 mutant AML. These results demonstrate that TP-0903 has activity in AML with TP53 dysfunction and support the clinical evaluation of TP-0903 in combination with decitabine in TP53 mutant AML. Acute myeloid leukemia (AML) with mutations in the tumor suppressor gene TP53 confers a dismal prognosis with 3-year overall survival of <5%. While inhibition of kinases involved in cell cycle regulation induces synthetic lethality in a variety of TP53 mutant cancers, this strategy has not been evaluated in mutant TP53 AML. Previously, we demonstrated that TP-0903 is a novel multikinase inhibitor with low nM activity against AURKA/B, Chk1/2, and other cell cycle regulators. Here, we evaluated the preclinical activity of TP-0903 in TP53 mutant AML cell lines, including a single-cell clone of MV4-11 containing a TP53 mutation (R248W), Kasumi-1 (R248Q), and HL-60 (TP 53 null). TP-0903 inhibited cell viability (IC50, 12–32 nM) and induced apoptosis at 50 nM. By immunoblot, 50 nM TP-0903 upregulated pChk1/2 and pH2AX, suggesting induction of DNA damage. The combination of TP-0903 and decitabine was additive in vitro, and in vivo significantly prolonged median survival compared to single-agent treatments in mice xenografted with HL-60 (vehicle, 46 days; decitabine, 55 days; TP-0903, 63 days; combination, 75 days) or MV4-11 (R248W) (51 days; 62 days; 81 days; 89 days) (p < 0.001). Together, these results provide scientific premise for the clinical evaluation of TP-0903 in combination with decitabine in TP53 mutant AML. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Risk, Characteristics and Biomarkers of Cytokine Release Syndrome in Patients with Relapsed/Refractory AML or MDS Treated with CD3xCD123 Bispecific Antibody APVO436.
- Author
-
Uckun, Fatih M., Watts, Justin, Mims, Alice S., Patel, Prapti, Wang, Eunice, Shami, Paul J., Cull, Elizabeth, Lee, Cynthia, Cogle, Christopher R., and Lin, Tara L.
- Subjects
BIOMARKERS ,INTERLEUKINS ,MYELODYSPLASTIC syndromes ,OBESITY ,CYTOKINES ,INTRAVENOUS therapy ,STEROIDS ,LEUCOCYTES ,TOCILIZUMAB ,DEXAMETHASONE ,ACUTE myeloid leukemia ,MONOCLONAL antibodies ,ANTINEOPLASTIC agents ,DISEASE incidence ,RACE ,LEUKEMIA ,OSTEOBLASTS ,CYTOKINE release syndrome ,DISEASE relapse ,RISK assessment ,CANCER patients ,SEX distribution ,TREATMENT effectiveness ,DESCRIPTIVE statistics ,IMMUNOPHENOTYPING ,T cells ,BONE marrow ,ANTIGENS ,PREANESTHETIC medication ,DISEASE remission ,DISEASE risk factors ,SYMPTOMS - Abstract
Simple Summary: Cytokine release syndrome is a potentially life-threatening complication of therapy with T-cell engaging bispecific antibodies. Here we evaluated the risk, characteristics and biomarkers of treatment-emergent cytokine release syndrome in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome who received weekly intravenous infusions of the CD3xCD123 bispecific antibody APVO436. Cytokine release syndrome was encountered in 10 of 46 patients (21.7%) treated with APVO436 with a cumulative Grade 3/4 cytokine release syndrome incidence of 8.7%. Cytokine profiling in patients who developed cytokine release syndrome after APVO436 infusion indicated that the predominant cytokine in this inflammatory cytokine response was IL-6. The findings from this research provide new insights regarding the biology and effective management of cytokine release syndrome in leukemia patients treated with T-cell redirecting bispecific antibodies. We evaluate the risk, characteristics and biomarkers of treatment-emergent cytokine release syndrome (CRS) in patients with relapsed/refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) who received APVO436 during the dose-escalation phase of a Phase 1B study (ClinicalTrials.gov, identifier: NCT03647800). Of four patients who developed Grade ≥ 3 CRS, two received steroid prophylaxis. The dose level, gender, race, obesity, or baseline hematologic parameters in peripheral blood did not predict the risk of CRS. Patients with a higher leukemia burden as determined by a higher total WBC, higher percentage of blasts in bone marrow, or higher percentage of blasts in peripheral blood (by hematopathology or immunophenotyping) did not have a higher incidence of CRS. There was an age difference between patients who did versus patients who did not develop CRS (72.9 ± 1.6 years (Median 73.5 years) vs. 63.3 ± 2.3 years (Median: 65.0 years), which was borderline significant (p = 0.04). Premedication with steroids did not eliminate the risk of CRS. Cytokine profiling in patients who developed CRS after APVO436 infusion indicates that the predominant cytokine in this inflammatory cytokine response was IL-6. APVO436-associated CRS was generally manageable with tocilizumab with or without dexamethasone. Notably, the development of CRS after APVO436 therapy did not appear to be associated with a response. The prolonged stabilization of disease, partial remissions and complete remissions were achieved in both patients who experienced CRS, as well as patients who did not experience CRS after APVO436 infusions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome.
- Author
-
Uckun, Fatih M., Lin, Tara L., Mims, Alice S., Patel, Prapti, Lee, Cynthia, Shahidzadeh, Anoush, Shami, Paul J., Cull, Elizabeth, Cogle, Christopher R., and Watts, Justin
- Subjects
MYELODYSPLASTIC syndromes ,IMMUNOGLOBULINS ,XENOGRAFTS ,ACUTE myeloid leukemia ,GENE expression ,DESCRIPTIVE statistics ,KAPLAN-Meier estimator ,DATA analysis software - Abstract
Simple Summary: AML is a common form of blood cancer in adults. This study was undertaken to evaluate if AML patients who have failed the available standard treatment options could tolerate and potentially benefit from a new form of therapy. This new therapy activates patients' own immune system against AML cells. The findings from this research may provide the foundation for a potentially more effective future form of standard therapy that is less likely to fail. APVO436 is a recombinant T cell-engaging humanized bispecific antibody designed to redirect host T cell cytotoxicity in an MHC-independent manner to CD123-expressing blast cells from patients with hematologic malignancies and has exhibited single-agent anti-leukemia activity in murine xenograft models of acute myeloid leukemia (AML). In this first-in-human (FIH) multicenter phase 1B study, we sought to determine the safety and tolerability of APVO436 in R/R AML/myelodysplastic syndrome (MDS) patients and identify a clinically active recommended phase 2 dose (RP2D) level for its further clinical development. A total of 46 R/R AML/MDS patients who had failed 1–8 prior lines of therapy received APVO436 as weekly intravenous (IV) infusions at 10 different dose levels, ranging from a Minimum Anticipated Biological Effect Level (MABEL) of 0.3 mcg to 60 mcg. APVO436 exhibited a favorable safety profile with acceptable tolerability and manageable drug-related adverse events (AEs), and its maximum tolerated dose (MTD) was not reached at a weekly dose of 60 mcg. The most common APVO436-related AEs were infusion-related reactions (IRR) occurring in 13 (28.3%) patients and cytokine release syndrome (CRS) occurring in 10 (21.7%). The single dose RP2D level was identified as 0.2 mcg/kg. Preliminary efficacy signals were observed in both AML and MDS patients: Prolonged stable disease (SD), partial remissions (PR), and complete remissions (CR) were observed in R/R AML patients as best overall responses to APVO436 at the RP2D level. Three of six evaluable MDS patients had marrow CRs. The safety and preliminary evidence of efficacy of APVO436 in R/R AML and MDS patients warrant further investigation of its clinical impact potential. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.