1. Photocatalytic reactive liquid microjunction surface sampling-mass spectrometry for rapid and selective in-situ analysis of alpha-unsubstituted amine metabolites or drugs in brain tissue.
- Author
-
Zhang L, Huang Y, Zhou Y, Wu Q, Wang Y, and Lu H
- Subjects
- Animals, Mice, Mass Spectrometry methods, Brain metabolism, Benzylamines analysis, Neurotransmitter Agents, Chromatography, High Pressure Liquid methods, Amines metabolism, Amino Acids chemistry
- Abstract
In in-situ mass spectrometry (MS), different on-tissue derivatization methods have been developed to enhance the signals of poorly ionizable primary amines. However, those chemical derivatization methods are laborious and time-consuming, and are usually limited to detection of high-abundance amino acids which suppress the reaction of low-abundance monoamine neurotransmitters and drugs. Herein, A rapid and selective photocatalytic derivatization technique for alpha-unsubstituted primary amine was developed with 5-hydroxyindole as derivatization reagent and TiO
2 as photocatalyst, and was introduced into liquid microjunction surface sampling (LMJSS)-MS system as online derivatization. The results showed that the photocatalytic derivatization method largely enhanced the signals of primary amines by 5-300 fold, and were selective to alpha-unsubstituted primary amines. Thus, the suppression effects from high-abundance amino acids to the reaction of monoamine neurotransmitters and benzylamine drugs proved to be largely reduced in the new method (matrix effect>50%) comparing with those in chemical derivatization method (matrix effect<10%). In addition, the optimal pH of the derivatization reaction was measured to be 7, which indicates the mild and physiologically compatible reaction conditions. By in-situ synthesis of TiO2 monolith in the transfer capillary of the LMJSS-MS system, rapid on-line photocatalytic derivatization was achieved and completed in 5 s during the transfer of sampling extract from the flow-probe to the MS inlet. With the new photocatalytic reactive LMJSS-MS method, detection limits of three primary amines on glass slides were in the range of 0.031-0.17 ng/mm2 with acceptable linearity (r=0.9815-0.9998) and relatively high repeatability (relative standard deviations <22.1%). Finally, endogenous tyramine, serotonin, two dipeptides and one doped benzylamine drug were identified and in-situ analyzed in the mouse cerebrum by the new method with largely enhanced signals comparing with LMJSS-MS without online derivatization. The new method provides a more selective, rapid and automated way to analyze alpha-unsubstituted amine metabolites and drugs in-situ comparing with traditional methods., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF