1. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
- Author
-
Fang, Yitian, Luo, Mingshuang, Ren, Zhixiang, Wei, Leyi, and Wei, Dong-Qing
- Subjects
LANGUAGE models ,PEPTIDES ,DRUG discovery ,AMINO acid sequence ,DEEP learning - Abstract
Functional peptides play crucial roles in various biological processes and hold significant potential in many fields such as drug discovery and biotechnology. Accurately predicting the functions of peptides is essential for understanding their diverse effects and designing peptide-based therapeutics. Here, we propose CELA-MFP, a deep learning framework that incorporates feature Contrastive Enhancement and Label Adaptation for predicting Multi-Functional therapeutic Peptides. CELA-MFP utilizes a protein language model (pLM) to extract features from peptide sequences, which are then fed into a Transformer decoder for function prediction, effectively modeling correlations between different functions. To enhance the representation of each peptide sequence, contrastive learning is employed during training. Experimental results demonstrate that CELA-MFP outperforms state-of-the-art methods on most evaluation metrics for two widely used datasets, MFBP and MFTP. The interpretability of CELA-MFP is demonstrated by visualizing attention patterns in pLM and Transformer decoder. Finally, a user-friendly online server for predicting multi-functional peptides is established as the implementation of the proposed CELA-MFP and can be freely accessed at http://dreamai.cmii.online/CELA-MFP. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF