1. Ad-derived bone marrow transplant induces proinflammatory immune peripheral mechanisms accompanied by decreased neuroplasticity and reduced gut microbiome diversity affecting AD-like phenotype in the absence of Aβ neuropathology.
- Author
-
Iban-Arias R, Yang EJ, Griggs E, Soares Dias Portela A, Osman A, Trageser KJ, Shahed M, and Maria Pasinetti G
- Subjects
- Mice, Animals, Bone Marrow Transplantation, Phylogeny, Phenotype, Neuronal Plasticity, Mice, Transgenic, Alzheimer Disease pathology, Gastrointestinal Microbiome physiology, Nervous System Diseases
- Abstract
Immune system dysfunction is increasingly recognized as a significant feature that contributes to Alzheimer's disease (AD) pathogenesis, reflected by alterations in central and peripheral responses leading to detrimental mechanisms that can contribute to the worsening of the disease. The damaging alterations in the peripheral immune system may disrupt the peripheral-central immune crosstalk, implicating the gut microbiota in this complex interaction. The central hypothesis posits that the immune signature inherently harbored in bone marrow (BM) cells can be transferred through allogeneic transplantation, influencing the recipient's immune system and modulating peripheral, gut, and brain immune responses. Employing a genetically modified mouse model to develop AD-type pathology we found that recipient wild-type (WT) mice engrafted with AD-derived BM, recapitulated the peripheral immune inflammatory donor phenotype, associated with a significant acceleration of cognitive deterioration in the absence of any overt change in AD-type amyloid neuropathology. Moreover, transcriptomic and phylogenetic 16S microbiome analysis evidence on these animals revealed a significantly impaired expression of genes associated with synaptic plasticity and neurotransmission in the brain and reduced bacteria diversity, respectively, compared to mice engrafted with WT BM. This investigation sheds light on the pivotal role of the peripheral immune system in the brain-gut-periphery axis and its profound potential to shape the trajectory of AD. In summary, this study advances our understanding of the complex interplay among the peripheral immune system, brain functionality, and the gut microbiome, which collectively influence AD onset and progression., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF