1. Probing Alzheimer's pathology: Exploring the next generation of FDDNP analogues for amyloid β detection.
- Author
-
Rejc L, Knez D, Molina-Aguirre G, Espargaró A, Kladnik J, Meden A, Blinc L, Lozinšek M, Jansen-van Vuuren RD, Rogan M, Martek BA, Mlakar J, Dremelj A, Petrič A, Gobec S, Sabaté R, Bresjanac M, Pinter B, and Košmrlj J
- Subjects
- Humans, Peptide Fragments metabolism, Peptide Fragments cerebrospinal fluid, Brain metabolism, Brain pathology, Brain diagnostic imaging, Molecular Docking Simulation, Molecular Dynamics Simulation, Plaque, Amyloid metabolism, Plaque, Amyloid pathology, Microscopy, Fluorescence methods, Alzheimer Disease metabolism, Alzheimer Disease diagnosis, Alzheimer Disease pathology, Amyloid beta-Peptides metabolism, Fluorescent Dyes chemistry
- Abstract
Fluorescent probes are a powerful tool for imaging amyloid β (Aβ) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aβ fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aβ- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aβ fibrils in vitro (K
d = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aβ1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aβ plaques. The intermolecular interactions of fluorophores with Aβ were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aβ1-42 in cerebrospinal fluid or blood., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF