1. Steady-state chemoreflex drive captures ventilatory acclimatization during incremental ascent to high altitude: Effect of acetazolamide.
- Author
-
Cates VC, Bruce CD, Marullo AL, Isakovich R, Saran G, Leacy JK, O Halloran KD, Brutsaert TD, Sherpa MT, and Day TA
- Subjects
- Humans, Altitude, Carbon Dioxide, Acclimatization, Acetazolamide pharmacology, Altitude Sickness
- Abstract
Ventilatory acclimatization (VA) is important to maintain adequate oxygenation with ascent to high altitude (HA). Transient hypoxic ventilatory response tests lack feasibility and fail to capture the integrated steady-state responses to chronic hypoxic exposure in HA fieldwork. We recently characterized a novel index of steady-state respiratory chemoreflex drive (SSCD), accounting for integrated contributions from central and peripheral respiratory chemoreceptors during steady-state breathing at prevailing chemostimuli. Acetazolamide is often utilized during ascent for prevention or treatment of altitude-related illnesses, eliciting metabolic acidosis and stimulating respiratory chemoreceptors. To determine if SSCD reflects VA during ascent to HA, we characterized SSCD in 25 lowlanders during incremental ascent to 4240 m over 7 days. We subsequently compared two separate subgroups: no acetazolamide (NAz; n = 14) and those taking an oral prophylactic dose of acetazolamide (Az; 125 mg BID; n = 11). At 1130/1400 m (day zero) and 4240 m (day seven), steady-state measurements of resting ventilation (V̇
I ; L/min), pressure of end-tidal (PET )CO2 (Torr), and peripheral oxygen saturation (SpO2 ; %) were measured. A stimulus index (SI; PET CO2 /SpO2 ) was calculated, and SSCD was calculated by indexing V̇I against SI. We found that (a) both V̇I and SSCD increased with ascent to 4240 m (day seven; V̇I : +39%, p < 0.0001, Hedges' g = 1.52; SSCD: +56.%, p < 0.0001, Hedges' g = 1.65), (b) and these responses were larger in the Az versus NAz subgroup (V̇I : p = 0.02, Hedges' g = 1.04; SSCD: p = 0.02, Hedges' g = 1.05). The SSCD metric may have utility in assessing VA during prolonged stays at altitude, providing a feasible alternative to transient chemoreflex tests., (© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2022
- Full Text
- View/download PDF