1. Experiments on the synthesis of superheavy nucleiFl284andFl285in thePu239,240+Ca48reactions
- Author
-
Robert Grzywacz, James B. Roberto, A. A. Voinov, Grigory K. Vostokin, V. G. Subbotin, N. T. Brewer, M. V. Shumeiko, A. V. Sabelnikov, R. N. Sagaidak, Yu. S. Tsyganov, Yuri Oganessian, V. K. Utyonkov, A. M. Sukhov, I. V. Shirokovsky, F. Sh. Abdullin, S. Y. Strauss, K. Miernik, A. N. Polyakov, K. P. Rykaczewski, J. H. Hamilton, S. N. Dmitriev, M. A. Stoyer, and M. G. Itkis
- Subjects
Physics ,Nuclear and High Energy Physics ,Order (ring theory) ,chemistry.chemical_element ,Flerovium ,chemistry ,Neutron number ,Production (computer science) ,Decay chain ,Alpha decay ,Atomic physics ,Nuclear Experiment ,Energy (signal processing) ,Spontaneous fission - Abstract
Irradiations of $^{239}\mathrm{Pu}$ and $^{240}\mathrm{Pu}$ targets with $^{48}\mathrm{Ca}$ beams aimed at the synthesis of $Z=114$ flerovium isotopes were performed at the Dubna Gas Filled Recoil Separator. A new spontaneously fissioning (SF) isotope $^{284}\mathrm{Fl}$ was produced for the first time in the $^{240}\mathrm{Pu}+^{48}\mathrm{Ca}$ (250 MeV) and $^{239}\mathrm{Pu}+^{48}\mathrm{Ca}$ (245 MeV) reactions. The cross section of the $^{239}\mathrm{Pu}(^{48}\mathrm{Ca},3n)^{284}\mathrm{Fl}$ reaction channel was about 20 times lower than predicted by theoretical models and about 50 times lower than the maximum fusion-evaporation cross section for the $3n$ and $4n$ channels measured in the $^{244}\mathrm{Pu}+^{48}\mathrm{Ca}$ reaction. In the $^{240}\mathrm{Pu}+^{48}\mathrm{Ca}$ experiment, performed at 245 MeV in order to maximize the $3n$-evaporation channel, three decay chains of $^{285}\mathrm{Fl}$ were detected. The $\ensuremath{\alpha}$-decay energy of $^{285}\mathrm{Fl}$ was measured for the first time and decay properties of its descendants $^{281}\mathrm{Cn}, ^{277}\mathrm{Ds}, ^{273}\mathrm{Hs}, ^{269}\mathrm{Sg}$, and $^{265}\mathrm{Rf}$ were determined with higher accuracy. The assignment of SF events observed during the irradiation of the $^{240}\mathrm{Pu}$ target with a 250 MeV $^{48}\mathrm{Ca}$ beam to $^{284}\mathrm{Fl}$ decay is presented and discussed. The cross sections at both $^{48}\mathrm{Ca}$ energies are similar and exceed that observed in the reaction with the lighter isotope $^{239}\mathrm{Pu}$ by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate a rapid decrease of stability of superheavy nuclei as the neutron number decreases from the predicted magic neutron number $N=184$.
- Published
- 2015
- Full Text
- View/download PDF