1. Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves.
- Author
-
Chacon DS, Torres TM, da Silva IB, de Araújo TF, Roque AA, Pinheiro FASD, Selegato D, Pilon A, Reginaldo FPS, da Costa CT, Vilasboa J, Freire RT, Voigt EL, Zuanazzi JAS, Libonati R, Rodrigues JA, Santos FLM, Scortecci KC, Lopes NP, Ferreira LS, Dos Santos LV, Cavalheiro AJ, Fett-Neto AG, and Giordani RB
- Subjects
- Gene Expression Profiling, Plant Leaves genetics, Seeds genetics, Tandem Mass Spectrometry, Alkaloids, Erythrina
- Abstract
Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets., Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented., Methods: The Next Generation Sequencing-based transcriptome ( de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach., Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species., Conclusion: Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).)
- Published
- 2021
- Full Text
- View/download PDF