1. Time-Varying EEG Correlations Improve Automated Neonatal Seizure Detection.
- Author
-
Tapani KT, Vanhatalo S, and Stevenson NJ
- Subjects
- Electroencephalography methods, Humans, Infant, Newborn, Seizures physiopathology, Time Factors, Algorithms, Electroencephalography standards, Seizures diagnosis, Support Vector Machine standards
- Abstract
The aim of this study was to develop methods for detecting the nonstationary periodic characteristics of neonatal electroencephalographic (EEG) seizures by adapting estimates of the correlation both in the time (spike correlation; SC) and time-frequency domain (time-frequency correlation; TFC). These measures were incorporated into a seizure detection algorithm (SDA) based on a support vector machine to detect periods of seizure and nonseizure. The performance of these nonstationary correlation measures was evaluated using EEG recordings from 79 term neonates annotated by three human experts. The proposed measures were highly discriminative for seizure detection (median AUC SC : 0.933 IQR: 0.821-0.975, median AUC TFC : 0.883 IQR: 0.707-0.931). The resultant SDA applied to multi-channel recordings had a median AUC of 0.988 (IQR: 0.931-0.998) when compared to consensus annotations, outperformed two state-of-the-art SDAs ( p < 0 . 0 0 1 ) and was noninferior to the human expert for 73/79 of neonates.
- Published
- 2019
- Full Text
- View/download PDF