1. Covariate Assisted Principal regression for covariance matrix outcomes.
- Author
-
Zhao Y, Wang B, Mostofsky SH, Caffo BS, and Luo X
- Subjects
- Brain diagnostic imaging, Computer Simulation, Humans, Linear Models, Algorithms, Magnetic Resonance Imaging
- Abstract
In this study, we consider the problem of regressing covariance matrices on associated covariates. Our goal is to use covariates to explain variation in covariance matrices across units. As such, we introduce Covariate Assisted Principal (CAP) regression, an optimization-based method for identifying components associated with the covariates using a generalized linear model approach. We develop computationally efficient algorithms to jointly search for common linear projections of the covariance matrices, as well as the regression coefficients. Under the assumption that all the covariance matrices share identical eigencomponents, we establish the asymptotic properties. In simulation studies, our CAP method shows higher accuracy and robustness in coefficient estimation over competing methods. In an example resting-state functional magnetic resonance imaging study of healthy adults, CAP identifies human brain network changes associated with subject demographics., (© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF