1. Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity.
- Author
-
Nurbekova Z, Srivastava S, Standing D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Turečková V, Strand M, Biswas MS, Mano J, and Sagi M
- Subjects
- Aldehyde Oxidase genetics, Aldehydes metabolism, Arabidopsis physiology, Arabidopsis Proteins genetics, Chlorophyll metabolism, Oxidation-Reduction, Plant Leaves genetics, Plant Leaves physiology, Plant Senescence, Abscisic Acid metabolism, Aldehyde Oxidase metabolism, Aldehydes toxicity, Arabidopsis genetics, Arabidopsis Proteins metabolism, Plant Growth Regulators metabolism
- Abstract
The Arabidopsis thaliana aldehyde oxidase 3 (AAO3) catalyzes the oxidation of abscisic aldehyde (ABal) to abscisic acid (ABA). Besides ABal, plants generate other aldehydes that can be toxic above a certain threshold. AAO3 knockout mutants (aao3) exhibited earlier senescence but equivalent relative water content compared with wild-type (WT) during normal growth or upon application of UV-C irradiation. Aldehyde profiling in leaves of 24-day-old plants revealed higher accumulation of acrolein, crotonaldehyde, 3Z-hexenal, hexanal and acetaldehyde in aao3 mutants compared with WT leaves. Similarly, higher levels of acrolein, benzaldehyde, crotonaldehyde, propionaldehyde, trans-2-hexenal and acetaldehyde were accumulated in aao3 mutants upon UV-C irradiation. Aldehydes application to plants hastened profuse senescence symptoms and higher accumulation of aldehydes, such as acrolein, benzaldehyde and 4-hydroxy-2-nonenal, in aao3 mutant leaves as compared with WT. The senescence symptoms included greater decrease in chlorophyll content and increase in transcript expression of the early senescence marker genes, Senescence-Related-Gene1, Stay-Green-Protein2 as well as NAC-LIKE, ACTIVATED-BY AP3/P1. Notably, although aao3 had lower ABA content than WT, members of the ABA-responding genes SnRKs were expressed at similar levels in aao3 and WT. Moreover, the other ABA-deficient mutants [aba2 and 9-cis-poxycarotenoid dioxygenase3-2 (nced3-2), that has functional AAO3] exhibited similar aldehydes accumulation and chlorophyll content like WT under normal growth conditions or UV-C irradiation. These results indicate that the absence of AAO3 oxidation activity and not the lower ABA and its associated function is responsible for the earlier senescence symptoms in aao3 mutant., (© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF