1. Wireless distributed environmental sensor networks for air pollution measurement-the promise and the current reality
- Author
-
Broday, David M., Arpaci, Alexander, Bartonova, Alena, Castell-Balaguer, Nuría, Cole-Hunter, Tom, Dauge, Franck R., Fishbain, Barak, Jones, Rod L., Galea, Karen, Jovasevic-Stojanovic, Milena, Kocman, David, Martinez-Iñiguez, Tania, Nieuwenhuijsen, Mark, Robinson, Johanna, Svecova, Vlasta, and Thai, Phong
- Subjects
in situ field calibration ,010504 meteorology & atmospheric sciences ,air pollution ,Air pollution ,010501 environmental sciences ,medicine.disease_cause ,lcsh:Chemical technology ,01 natural sciences ,Biochemistry ,Article ,wireless distributed environmental sensor networks ,micro sensing units ,spatiotemporal variability ,multi-sensor nodes ,Analytical Chemistry ,11. Sustainability ,medicine ,Wireless ,lcsh:TP1-1185 ,Electrical and Electronic Engineering ,Instrumentation ,Air quality index ,0105 earth and related environmental sciences ,Remote sensing ,Pollutant ,Air pollutant concentrations ,Data stream mining ,business.industry ,Atomic and Molecular Physics, and Optics ,13. Climate action ,Software deployment ,Environmental science ,Spatial variability ,business - Abstract
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.
- Published
- 2017