1. Scaling up of tsetse control to eliminate Gambian sleeping sickness in northern Uganda.
- Author
-
Hope, Andrew, Mugenyi, Albert, Esterhuizen, Johan, Tirados, Inaki, Cunningham, Lucas, Garrod, Gala, Lehane, Mike J., Longbottom, Joshua, Mangwiro, TN Clement, Opiyo, Mercy, Stanton, Michelle, Torr, Steve J., Vale, Glyn A., Waiswa, Charles, and Selby, Richard
- Subjects
AFRICAN trypanosomiasis ,TSETSE-flies ,TRYPANOSOMA brucei ,NEGLECTED diseases ,SLEEP - Abstract
Background: Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes Gambian human African trypanosomiasis (gHAT) in Central and West Africa. Several countries use Tiny Targets, comprising insecticide-treated panels of material which attract and kill tsetse, as part of their national programmes to eliminate gHAT. We studied how the scale and arrangement of target deployment affected the efficacy of control. Methodology and principal findings: Between 2012 and 2016, Tiny Targets were deployed biannually along the larger rivers of Arua, Maracha, Koboko and Yumbe districts in North West Uganda with the aim of reducing the abundance of tsetse to interrupt transmission. The extent of these deployments increased from ~250 km
2 in 2012 to ~1600 km2 in 2015. The impact of Tiny Targets on tsetse population was assessed by analysing catches of tsetse from a network of monitoring traps; sub-samples of captured tsetse were dissected to estimate their age and infection status. In addition, the condition of 780 targets (~195/district) was assessed for up to six months after deployment. In each district, mean daily catches of tsetse (G. fuscipes fuscipes) from monitoring traps declined significantly by >80% following the deployment of targets. The reduction was apparent for several kilometres on adjacent lengths of the same river but not in other rivers a kilometre or so away. Expansion of the operational area did not always produce higher levels of suppression or detectable change in the age structure or infection rates of the population, perhaps due to the failure to treat the smaller streams and/or invasion from adjacent untreated areas. The median effective life of a Tiny Target was 61 (41.8–80.2, 95% CI) days. Conclusions: Scaling-up of tsetse control reduced the population of tsetse by >80% across the intervention area. Even better control might be achievable by tackling invasion of flies from infested areas within and outside the current intervention area. This might involve deploying more targets, especially along smaller rivers, and extending the effective life of Tiny Targets. Author summary: Gambian human African trypanosomiasis (gHAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies (Glossina). Uganda's strategy to eliminate gHAT includes the deployment of Tiny Targets, comprising insecticide-treated panels of cloth which attract and kill tsetse. Our data from a network of monitoring traps assessed how increasing the intervention area from ~250 km2 to ~1600 km2 affected the degree of control. Inspection of deployed targets indicated their effective lifespan. Targets reduced tsetse abundance by >80% beside the rivers where they were deployed but had no clear effect on adjacent rivers where targets were absent. As the intervention area increased, so did the extent of the area controlled. We did not deploy targets along the smaller rivers so that, as expected, the tsetse population was not eliminated. Our findings suggest that the population was sustained at low levels by invasion of tsetse from untreated parts of the drainage system. The average effective life of targets was ~60 days as against the ~180 days for targets deployed in Kenya. This discrepancy is attributable, in part, to the Uganda targets being removed by seasonal floods. While the level of control achieved is already more than sufficient to interrupt transmission of gHAT, even better control would be achieved by increasing the coverage of the drainage system. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF