1. Potential role of MRN-100, an iron-based compound, in upregulating production of cytokine IL-10 in human dendritic cells to promote an anti-inflammatory response in vitro
- Author
-
Aya D Ghoneum, James K. Gimzewski, Mamdooh Ghoneum, and Sudhanshu Agrawal
- Subjects
CD4-Positive T-Lymphocytes ,0301 basic medicine ,Cells ,medicine.medical_treatment ,hydroferrate fluid ,Immunology ,Anti-Inflammatory Agents ,Pharmacology ,Antioxidants ,CD4+T cells ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,medicine ,2.1 Biological and endogenous factors ,Humans ,Immunology and Allergy ,Original Research Article ,Aetiology ,MRN-100 ,Cells, Cultured ,anti-inflammatory ,CD86 ,Cultured ,Chemistry ,Inflammatory and immune system ,Interleukin ,Pharmacology and Pharmaceutical Sciences ,Dendritic Cells ,CD4+ T cells ,In vitro ,Interleukin 10 ,Emerging Infectious Diseases ,Infectious Diseases ,030104 developmental biology ,Cytokine ,5.1 Pharmaceuticals ,030220 oncology & carcinogenesis ,Cytokines ,Tumor necrosis factor alpha ,Development of treatments and therapeutic interventions ,Iron Compounds ,CD80 - Abstract
The hydroferrate fluid MRN-100, an iron-based compound with potent antioxidant characteristics, was examined to identify its possible anti-inflammatory effects on human dendritic cells (DCs) in vitro. Human monocyte–derived DCs were treated with MRN-100 at two concentrations (50 and 100 μL/mL) for 24 h and then stimulated with or without lipopolysaccharides (LPS). The expression of DC maturation markers was assessed by flow cytometry and the production of cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Functional assay was performed by co-culturing MRN-100-treated and untreated DCs with allogeneic naïve CD4+ T cells and assaying the T cells’ cytokine production. Results show that treatment with MRN-100 significantly upregulated the co-stimulatory molecules CD80 and CD86 and increased human leukocyte antigen-DR (HLA-DR) though not significantly. MRN-100 treatment also significantly increased the production of the anti-inflammatory cytokine interleukin (IL)-10. On the other hand, MRN-100 significantly induced the secretion of pro-inflammatory cytokines such as IL-6 only at high concentrations. Furthermore, DCs pretreated with MRN-100 and either stimulated or not with LPS were able to prime CD4+ T cells to secrete significant amounts of IL-10 while inhibiting the secretion of pro-inflammatory cytokine tumor necrosis factor (TNF)-α. These results indicate that MRN-100 is a powerful anti-inflammatory agent that promotes the generation of an anti-inflammatory immune response in vitro. MRN-100 could be beneficial for treating patients with inflammatory diseases, including arthritis and type 1 diabetes, and its potential benefits should be examined in clinical trials.
- Published
- 2019
- Full Text
- View/download PDF