11 results on '"Aline Gratien"'
Search Results
2. Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces
- Author
-
Alexia de Loera, Edouard Pangui, Aline Gratien, Mathieu Cazaunau, Jean-François Doussin, David O. De Haan, and Natalie G. Jimenez
- Subjects
Ammonium sulfate ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Methylglyoxal ,010501 environmental sciences ,01 natural sciences ,Aerosol ,chemistry.chemical_compound ,chemistry ,Glycine ,Cloud droplet ,Glyoxal ,Relative humidity ,Physical and Theoretical Chemistry ,0105 earth and related environmental sciences ,Nuclear chemistry - Abstract
In order to predict the amount of secondary organic aerosol formed by heterogeneous processing of methylglyoxal, uptake coefficients (γ) and estimates of uptake reversibility are needed. Here, uptake coefficients are extracted from chamber studies involving ammonium sulfate and glycine seed aerosol at high relative humidity (RH ≥ 72%). Methylglyoxal uptake coefficients on prereacted glycine aerosol particles had a strong dependence on RH, increasing from γ = 0.4 × 10–3 to 5.7 × 10–3 between 72 and 99% RH. Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium sulfate at 95% RH (γAS,wet = 3.7 ± 0.8 × 10–3). Methylglyoxal uptake coefficients measured at ≥95% RH are larger than those reported for glyoxal on nonacidified, aqueous aerosol surfaces at 90% RH. Slight curvature in first-order uptake plots suggests that methylglyoxal uptake onto aqueous aerosol surfaces is not entirely irreversible after 20 min. Methylglyoxal uptake by cloud droplets was rapid and largely reversible...
- Published
- 2018
- Full Text
- View/download PDF
3. Glyoxal's impact on dry ammonium salts: fast and reversible surface aerosol browning
- Author
-
Natalie G. Jimenez, L. N. Hawkins, David O. De Haan, Hannah G. Welsh, Mathieu Cazaunau, Jean-François Doussin, Aline Gratien, Paola Formenti, Margaret A. Tolbert, Kevin Jansen, Raunak Pednekar, Edouard Pangui, Antonin Bergé, Alexia de Loera, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Atmospheric Science ,Ammonium sulfate ,010504 meteorology & atmospheric sciences ,Analytical chemistry ,010501 environmental sciences ,Radiative forcing ,01 natural sciences ,complex mixtures ,lcsh:QC1-999 ,Aerosol ,lcsh:Chemistry ,Absorbance ,chemistry.chemical_compound ,lcsh:QD1-999 ,chemistry ,13. Climate action ,Sodium sulfate ,[SDE]Environmental Sciences ,Sulfate aerosol ,Relative humidity ,Sulfate ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,lcsh:Physics ,0105 earth and related environmental sciences - Abstract
Alpha-dicarbonyl compounds are believed to form brown carbon in the atmosphere via reactions with ammonium sulfate (AS) in cloud droplets and aqueous aerosol particles. In this work, brown carbon formation in AS and other aerosol particles was quantified as a function of relative humidity (RH) during exposure to gas-phase glyoxal (GX) in chamber experiments. Under dry conditions (RH 2 and are consistent between AS and AS–glycine aerosol. Dry methylammonium sulfate aerosol browns 4 times more than dry AS aerosol, but deliquesced AS aerosol browns much less than dry AS aerosol. Optical measurements at 405, 450, and 530 nm provide an estimated Ångstrom absorbance coefficient of -16±4. This coefficient and the empirical relationship between GX and albedo are used to estimate an upper limit to global radiative forcing by brown carbon formed by 70 ppt GX reacting with AS (+7.6×10-5 W m−2). This quantity is
- Published
- 2020
- Full Text
- View/download PDF
4. High-NOx Photooxidation of n-Dodecane: Temperature Dependence of SOA Formation
- Author
-
Aline Gratien, Edouard Pangui, Bénédicte Picquet-Varrault, Houssni Lamkaddam, Jean-François Doussin, and Mathieu Cazaunau
- Subjects
010504 meteorology & atmospheric sciences ,Meteorology ,Concentration dependence ,Chemistry ,Analytical chemistry ,General Chemistry ,010501 environmental sciences ,01 natural sciences ,Organic vapor ,Aerosol ,N-dodecane ,Environmental Chemistry ,Seeding ,Volatility (chemistry) ,NOx ,Volume concentration ,0105 earth and related environmental sciences - Abstract
The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C12H26) in the presence of NOx in the CESAM chamber (French acronym for “Chamber for Atmospheric Multiphase Experimental Simulation”). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning...
- Published
- 2016
- Full Text
- View/download PDF
5. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles
- Author
-
Mathieu Cazaunau, F. Siekmann, H. L. Dewitt, Anne Monod, Vincent Michoud, Jean-François Doussin, L. Bregonzio-Rozier, Andrea Tapparo, S. B. Morales, Edouard Pangui, Brice Temime-Roussel, Chiara Giorio, Aline Gratien, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Chimiche [Padova], Università degli Studi di Padova = University of Padua (Unipd), Aix Marseille Université (AMU), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Giorio, Chiara [0000-0001-7821-7398], Apollo - University of Cambridge Repository, Universita degli Studi di Padova, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Evaporation ,010501 environmental sciences ,Photochemistry ,complex mixtures ,behavioral disciplines and activities ,7. Clean energy ,01 natural sciences ,lcsh:Chemistry ,chemistry.chemical_compound ,Mass concentration (chemistry) ,Dissolution ,NOx ,Isoprene ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Aqueous solution ,Condensation ,37 Earth Sciences ,lcsh:QC1-999 ,Aerosol ,lcsh:QD1-999 ,chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,3701 Atmospheric Sciences ,sense organs ,[CHIM.OTHE]Chemical Sciences/Other ,lcsh:Physics - Abstract
The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/NOx/light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are two and four times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of two or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to water soluble volatile organic compounds (VOCs) dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
- Published
- 2016
- Full Text
- View/download PDF
6. Methylamine's Effects on Methylglyoxal-Containing Aerosol: Chemical, Physical, and Optical Changes
- Author
-
Benjamin W. Joyce, Melanie D. Zauscher, Paola Formenti, Alexia de Loera, Jean-François Doussin, Hannah G. Welsh, Tianqu Cui, Natalie G. Jimenez, Matthieu Riva, L. N. Hawkins, Aki Pajunoja, Matthieu Cazaunau, Edouard Pangui, Alyssa D. Andretta, Aline Gratien, Jason D. Surratt, David O. De Haan, Audrey C. De Haan, IRCELYON-Catalytic and Atmospheric Reactivity for the Environment (CARE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,Aqueous solution ,Methylamine ,0208 environmental biotechnology ,Methylglyoxal ,Cationic polymerization ,02 engineering and technology ,[CHIM.CATA]Chemical Sciences/Catalysis ,010501 environmental sciences ,Photochemistry ,complex mixtures ,01 natural sciences ,Oligomer ,[SDE.ES]Environmental Sciences/Environmental and Society ,020801 environmental engineering ,Aerosol ,chemistry.chemical_compound ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,Particle ,Amine gas treating ,0105 earth and related environmental sciences - Abstract
Methylamine, a common atmospheric amine species, is found in the gas, particle, and aqueous phases. It has been shown to form light-absorbing, oligomeric species in reactions with methylglyoxal and other aldehyde species in bulk aqueous-phase experiments and when mixed into seed aerosol as a sulfate salt. Here, we explore the influence of multiphase methylamine chemistry on aerosol production, properties, and molecular composition. When methylglyoxal aerosol particles were exposed to ∼2 ppm methylamine gas in a humid chamber, rapid browning was observed, but not growth. Aerosol bounce measurements indicated that particles became slightly more viscous and hydrophobic upon methylamine exposure. Subsequent cloud processing increased both viscosity and hygroscopicity but had little effect on browning, consistent with high-resolution mass spectrometry results showing that aerosol oligomer dicarbonyl functional groups were transformed into cationic imidazole rings. Photolytic cloud processing triggered the inco...
- Published
- 2019
- Full Text
- View/download PDF
7. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling
- Author
-
Adam C. Smith, Jean-François Doussin, Marisol Almodovar, Alexia de Loera, David O. De Haan, Tiffany N. Stewart, Shiva Nilakantan, Mathieu Cazaunau, Edouard Pangui, Mary Caitlin Jordan, Tianqu Cui, Enrico Tapavicza, Aline Gratien, Audrey C. De Haan, Matthieu Riva, Jason D. Surratt, IRCELYON-Catalytic and Atmospheric Reactivity for the Environment (CARE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Absorption spectroscopy ,Nitrogen ,Electrospray ionization ,Mass spectrometry ,Photochemistry ,01 natural sciences ,Gas Chromatography-Mass Spectrometry ,chemistry.chemical_compound ,0103 physical sciences ,Environmental Chemistry ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Aerosols ,Aqueous solution ,Photolysis ,010304 chemical physics ,Methylamine ,Methylglyoxal ,Photodissociation ,General Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,Pyruvaldehyde ,[SDE.ES]Environmental Sciences/Environmental and Society ,Aerosol ,chemistry - Abstract
Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant lig...
- Published
- 2018
- Full Text
- View/download PDF
8. Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation
- Author
-
Andrea Tapparo, Arthur T. Zielinski, Helen Langley DeWitt, Jean-François Doussin, Magda Claeys, Markus Kalberer, Mathieu Cazaunau, Didier Voisin, Lola Brégonzio-Rozier, Vincent Michoud, Aline Gratien, Reinhilde Vermeylen, Sylvain Ravier, Edouard Pangui, Brice Temime-Roussel, Chiara Giorio, Anne Monod, Department of Chemistry (Cambridge], University of Cambridge [UK] (CAM), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Chimiche [Padova], Università degli Studi di Padova = University of Padua (Unipd), Department of Pharmaceutical Sciences, University of Antwerp (UA), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K, Universita degli Studi di Padova, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)
- Subjects
010504 meteorology & atmospheric sciences ,Analytical chemistry ,Methacrolein ,010501 environmental sciences ,Mass spectrometry ,7. Clean energy ,01 natural sciences ,complex mixtures ,Article ,chemistry.chemical_compound ,Metastability ,Relative humidity ,Physical and Theoretical Chemistry ,Isoprene ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Aqueous solution ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Physics ,Energy budget ,[SDE.ES]Environmental Sciences/Environmental and Society ,Aerosol ,Chemistry ,chemistry ,13. Climate action ,Environmental chemistry ,sense organs - Abstract
Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring, in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.
- Published
- 2017
- Full Text
- View/download PDF
9. Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling
- Author
-
Aki Pajunoja, Hannah G. Welsh, Paola Formenti, Mathieu Cazaunau, Jason R. Casar, Michael A. Symons, Elyse A. Pennington, Alexia de Loera, Raunak Pednekar, David O. De Haan, Lorenzo Caponi, Edouard Pangui, Melanie D. Zauscher, Aline Gratien, L. N. Hawkins, Natalie G. Jimenez, and Jean-François Doussin
- Subjects
Aerosols ,Ammonium sulfate ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Inorganic chemistry ,Methylglyoxal ,chemistry.chemical_element ,General Chemistry ,010501 environmental sciences ,Pyruvaldehyde ,complex mixtures ,01 natural sciences ,Carbon ,Aerosol ,chemistry.chemical_compound ,chemistry ,Ammonium Compounds ,Browning ,Environmental Chemistry ,Ammonium ,Sulfate ,Amines ,0105 earth and related environmental sciences - Abstract
The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (
- Published
- 2017
10. Multiphase Photochemistry of Pyruvic Acid under Atmospheric Conditions
- Author
-
Allison E. Reed Harris, Jean-François Doussin, Elizabeth C. Griffith, Aline Gratien, Mathieu Cazaunau, Anne Monod, Edouard Pangui, Aki Pajunoja, Annele Virtanen, Veronica Vaida, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Eastern Finland, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Aqueous solution ,010504 meteorology & atmospheric sciences ,Photodissociation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Aerosol ,chemistry.chemical_compound ,Acetic acid ,chemistry ,13. Climate action ,Phase (matter) ,Carbon dioxide ,[SDE]Environmental Sciences ,[CHIM]Chemical Sciences ,Reactivity (chemistry) ,Pyruvic acid ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Aerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions. Additionally, we identify a new C6 product, zymonic acid, a species that has not previously been reported from pyruvic acid photolysis under any conditions. Its observation here, and corresponding spectroscopic signatures, indicates it could be formed by heterogeneous reactions at the droplet surface. Prior studies of the aqueous photolysis of pyruvic acid have shown that high-molecular-weight compounds are formed via...
- Published
- 2017
- Full Text
- View/download PDF
11. Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein
- Author
-
Andrea Tapparo, F. Siekmann, Sylvain Ravier, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Brice Temime-Roussel, J-F Doussin, Aline Gratien, Vincent Michoud, L. Bregonzio-Rozier, S. B. Morales, Anne Monod, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Aix Marseille Université (AMU), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Chimiche [Padova], Università degli Studi di Padova = University of Padua (Unipd), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Universita degli Studi di Padova, Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes (INSIS)
- Subjects
Atmospheric Science ,Atmospheric Science, aerosol, smog chamber, SOA ,010504 meteorology & atmospheric sciences ,aerosol ,Chemistry ,Radical ,smog chamber ,Methacrolein ,010501 environmental sciences ,Photochemistry ,01 natural sciences ,lcsh:QC1-999 ,Product distribution ,Aerosol ,lcsh:Chemistry ,Atmosphere ,chemistry.chemical_compound ,lcsh:QD1-999 ,Mass spectrum ,SOA ,[CHIM]Chemical Sciences ,lcsh:Physics ,NOx ,Isoprene ,0105 earth and related environmental sciences - Abstract
First- and higher order-generation products formed from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber. Significant oxidation rates have been maintained for up to 7 h, allowing the study of highly oxidized products. Gas-phase product distribution and yields were obtained, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation has also been investigated. SOA mass yields from previous studies show large discrepancies. The mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission similar to the solar spectrum. Differences in light source are therefore proposed to explain partially the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. There is a high degree of similarity between the SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e., presence of NOx and long term oxidation). According to our results, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.