1. Monitoring calcium handling by the plant endoplasmic reticulum with a low-Ca 2+ -affinity targeted aequorin reporter.
- Author
-
Cortese E, Moscatiello R, Pettiti F, Carraretto L, Baldan B, Frigerio L, Vothknecht UC, Szabo I, De Stefani D, Brini M, and Navazio L
- Subjects
- Aequorin genetics, Animals, Arabidopsis genetics, Chloroplasts metabolism, Cytosol metabolism, Homeostasis, Luminescent Proteins metabolism, Seedlings metabolism, Aequorin metabolism, Arabidopsis metabolism, Calcium metabolism, Endoplasmic Reticulum metabolism
- Abstract
Precise measurements of dynamic changes in free Ca
2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system., (© 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)- Published
- 2022
- Full Text
- View/download PDF