1. Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route
- Author
-
Vladimir Parpura, Giorgio Carmignoto, Alexei Verkhratsky, Alfonso Araque, Philip G. Haydon, and Robert Zorec
- Subjects
Review Article ,Synaptic Transmission ,2-APB, diphenylboric acid 2-aminoethyl ester ,0302 clinical medicine ,InsP3R, inositol 1,4,5-trisphosphate receptor ,Adenosine Triphosphate ,LTP, long-term potentiation ,NCX, Na+/Ca2+ exchanger ,TIRFM, total internal reflection microscopy ,TRPC1, TRP canonical 1 ,NMDAR, N-methyl-d-aspartate receptor ,Cytoskeleton ,ADA, adenosine deaminase ,Calcium signaling ,GFP, green fluorescent protein ,traffic ,EGFP, enhanced GFP ,0303 health sciences ,SWA, slow wave activity ,IF, intermediate filament ,General Neuroscience ,[Ca2+]i, cytosolic/intracellular Ca2+ levels ,Emd, emerald green ,GAT-1, GABA transporter-1 ,Cm, membrane capacitance ,Secretory Vesicle ,Cell biology ,HEK-293 cells, human embryonic kidney cells ,SNAP-23, 23 kDa synaptosome-associated protein ,Signalling ,medicine.anatomical_structure ,V-ATPase, vacuolar type of proton ATPase ,SOCE, store-operated Ca2+ entry ,exocytosis ,Sb2, synaptobrevin 2 ,Astrocyte ,TRP, transient receptor potential ,dnSNARE, dominant negative SNARE ,Neurotransmission ,Biology ,VGLUT, vesicular glutamate transporter ,Models, Biological ,Exocytosis ,S5 ,ER, endoplasmic reticulum ,03 medical and health sciences ,astrocyte ,ADK, adenosine kinase ,mGluR, metabotropic GluR ,Extracellular ,medicine ,Animals ,Humans ,ANP, atrial natriuretic peptide ,Calcium Signaling ,sleep ,VGCC, voltage-gated Ca2+ channels ,030304 developmental biology ,GluR, glutamate receptor ,SNARE, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor ,ECS, extracellular space ,GFAP, glial fibrillary acidic protein ,RyR, ryanodine receptor ,Astrocytes ,SERCA, sarcoplasmic/endoplasmic reticulum Ca2+-ATPase ,epilepsy ,Calcium ,Neurology (clinical) ,ENT, equilibrative nucleoside transporter ,Neuroscience ,GABA, γ-aminobutyric acid ,Ru360, Ruthenium 360 ,030217 neurology & neurosurgery - Abstract
Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca 2+-based excitability displayed by astrocytes. An increase in cytosolic Ca 2+ levels in astrocytes can lead to the release of signaling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments). Gliotransmitters released into the ECS (extracellular space) can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca 2+ dynamics, Ca 2+-dependent gliotransmission and astrocyte-neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca 2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca 2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy. © 2012 The Author(s).
- Published
- 2012