4 results on '"Huang, Hailei"'
Search Results
2. Novel Role of AaMYBC1 in Regulating Actinidia arguta Vine Architecture by Elongating Internode Based on Multi-Omics Analysis of Transgenic Tobacco.
- Author
-
Li, Yukuo, Huang, Hailei, Abid, Muhammad, Gu, Hong, Cheng, Zhongping, Fang, Jinbao, and Qi, Xiujuan
- Subjects
- *
TOBACCO analysis , *ACTINIDIA , *CLIMBING plants , *SECONDARY metabolism , *AUXIN , *TRANSGENIC plants , *TOBACCO - Abstract
The internode length affects the status of fruiting branches and shapes the vine architecture. MYB TFs (transcription factors) have been widely studied and reported to control many biological processes including secondary metabolism, abiotic stresses, growth and development, etc. However, the roles of MYB TFs in regulating internode length remain poorly understood. Here, we demonstrated that a secondary metabolism-related R2R3-MYB TF AaMYBC1 from Actinidia arguta was involved in the regulation of internode length by combined analysis of transcriptome and metabolome of transgenic tobacco plants. The metabolome analysis of OE (over-expressed tobacco) and WT (wild-typed tobacco) showed that there were a total of 1000 metabolites, 176 of which had significant differences. A key metabolite pme1651 annotated as indole 3-acetic acid belonged to phytohormone that was involved in internode length regulation. The RNA-seq analysis presented 446 differentially expressed genes (DEGs) between OE and WT, 14 of which were common DEGs in KEGG and GO enrichment. Through the combined analysis of metabolome and transcriptome in transgenic and wild-type tobacco, three key genes including two SAUR and a GH3 gene were possibly involved in internode elongation. Finally, a regulatory module was deduced to show the role of AaMYBC1 in internode elongation. Our results proposed a molecular mechanism of AaMYBC1 regulating internode length by mediated auxin signaling, implying the potential role in regulating the vine architecture. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Characterization and Identification of a Ripening-Related Gene AaPG18 in Actinidia arguta.
- Author
-
Li, Yukuo, Huang, Hailei, Abid, Muhammad, Gu, Hong, Fang, Jinbao, Cheng, Zhongping, and Qi, Xiujuan
- Subjects
- *
ACTINIDIA , *FRUIT ripening , *GENE expression profiling , *GENE families , *CELL death , *FRUIT processing - Abstract
Actinidia arguta (A. arguta) is a kind of climacteric fruit that quickly softens and limits fruit shelf-life and commercial value. Therefore, it is of great significance to develop kiwifruit genotypes with an extended shelf-life of fruit. However, the ripening and softening mechanisms remain unclear in A. arguta. Here, we demonstrated that a key polygalacturonase (PG)-encoding gene AaPG18 was involved in A. arguta ripening through the degradation of the cell wall. Fruits were harvested at three developmental stages (S1, S2, and S3) for high-throughput transcriptome sequencing, based on which two candidate transcripts c109562_g1 and c111961_g1 were screened. The genome-wide identification of the PG gene family assigned c109562_g1 and c111961_g1 to correspond to AaPG4 and AaPG18, respectively. The expression profiles of candidate genes at six preharvest stages of fruit showed significantly higher expression levels of AaPG18 than AaPG4, indicating AaPG18 might be a key gene during fruit ripening processes. The subcellular localization displayed AaPG18 was located at the cytoplasmic membrane. The transient overexpression of AaPG18 in strawberry and the following morphological observation suggested AaPG18 played a key role in maintaining the stability of cell morphology. The homologous transient transformation in A. arguta "RB-4" proved the crucial function of AaPG18 in fruit ripening processes by causing the rapid redness of the fruit, which was an indicator of fruit maturity. All in all, our results identified AaPG18 as a key candidate gene involved in cell wall degeneration, which provides a basis for the subsequent exploration of the molecular mechanisms underlying the ripening and softening of A. arguta fruit. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. Comparative Transcriptome Analysis of Different Actinidia arguta Fruit Parts Reveals Difference of Light Response during Fruit Coloration.
- Author
-
Huang, Hailei, Abid, Muhammad, Lin, Miaomiao, Wang, Ran, Gu, Hong, Li, Yukuo, and Qi, Xiujuan
- Subjects
- *
KIWIFRUIT , *FRUIT , *ACTINIDIA , *ANTHOCYANINS , *TOBACCO , *CARBON metabolism , *PLANT hormones - Abstract
Simple Summary: Kiwifruit (A. arguta) color is one of the most important quality characters. Exploring the coloration mechanism is significant for the genetic improvement of color quality and the breeding of new germplasms. As a critical environmental factor, light plays a key role in fruit coloration. However, the effecting mechanism of light on A. arguta coloration remains unclear. In current research, different A. arguta parts with different treatments were performed high throughput RNA sequencing, based on which candidate genes and corresponding annotations were obtained. Finally, AaMYB308like was screened as an R2R3-MYB typed TF involved in light-inducible fruit coloration through the result analysis of bioinformatics and molecular biology experiments. Our study provides insights into the photoreponse mechanisms in A. arguta coloration. Kiwifruit coloration is an important agronomic trait used to determine fruit quality, and light plays a vital role in the coloration process. The effect of light on fruit coloration has been studied in many species, but differences in the photoresponse of different fruit parts during fruit coloration is unclear in kiwifruit (Actinidia arguta). In this study, peel and core with bagging and non-bagging treatment at two stages were selected to perform high throughput RNA sequencing. A total of 100,417 unigenes (25,186 unigenes with length beyond 1000 bp) were obtained, of which 37,519 unigenes were annotated in functional databases. GO and KEGG enrichment results showed that 'plant hormone signal transduction' and 'carbon metabolism' were the key pathways in peel and core coloration, respectively. A total of 27 MYB-related TFs (transcription factors) were differentially expressed in peel and core. An R2R3-MYB typed TF, AaMYB308like, possibly served as a candidate objective, which played a vital role in light-inducible fruit coloration based on bioinformatics analysis. Transient overexpression of AaMYB308like suggested overexpression of AaMYB308like elevated transcription level of NtCHI in Nicotiana tabacum leaves. Integration of all these results imply that AaMYB308like might be served as a light-responsive transcription factor to regulate anthocyanin biosynthesis in A. arguta. Moreover, our study provided important insights into photoreponse mechanisms in A. arguta coloration. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.