1. Effect of size distribution and grain growth on the formation of molecules in star forming regions.
- Author
-
Acharyya, Kinsuk
- Subjects
- *
STAR formation , *STELLAR evolution , *PARTICLE size distribution , *COSMIC grains , *MOLECULAR clouds , *DENSITY of stars , *SURFACE reactions , *ACCRETION (Astrophysics) - Abstract
We investigate the effects of grain size distribution and grain growth on molecular abundances during the chemical evolution of a cold dense interstellar cloud using a gas-grain numerical code. Dense interstellar clouds are the birth place of stellar systems like ours. Most models with grain surface chemistry have used so-called classical grains with canonical dust to gas ratio as 1:100, characterized by a radius of 0.1 μm and number density of 1.33 × 10-12 ηH, where ηH is the number density of hydrogen in all forms. We considered two different size distributions based on earliermodels and compared our findingswith classical grains. To incorporate different granular sizes, we divided the distribution of grain sizes into numbers of logarithmically equally-spaced ranges, integrated over each range to find its total granular number density, and assigned that number density to an average size in that range. Then we calculated rate coefficients for accretion, surface reactions and desorption as a function of grain size. We then followed the chemical evolution of the surface populations of these grains along with the gas phase chemistry for 10 Million years. We found that the effective surface area of a grain size (product of number density and grain cross section) is an important parameter. The fractional abundances of surface species on grains within a given distribution scale with the effective surface areas of the grain distribution components in the absence of grain growth. We found that the grain growth increases the grain size considerably which in turn increases the rate of depletion of molecules (due to higher accretion rate), such as CO, produced in the gas phase, which results in lower gas-phase abundances and higher surface abundances. For the first time, these results helps to verify the quality of the classical grain approximation for cold cloud models. Further, it also provides an important basis for future study that may require size distributions. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF