1. Physico-chemical and extraction properties on alkali-treated Acacia pennata fiber.
- Author
-
Sheeba KRJ, Alagarasan JK, Dharmaraja J, Kavitha SA, Shobana S, Arvindnarayan S, Vadivel M, Lee M, and Retnam KP
- Subjects
- Alkalies chemistry, Cellulose chemistry, Lignin chemistry, Tensile Strength, Acacia
- Abstract
The production of reinforced composite materials can generally benefit greatly from the use of natural cellulosic woody fibers as good sustainable resources. Natural plants like hemp, cotton, and bamboo are great options for knitters and crocheters looking to make eco-friendly goods. The current study examines the properties of natural fiber obtained from the stem of the Acacia pennata (AP) plant, as well as its basic physico-chemical, structural, thermal, and mechanical characteristics. The key goal of this work was to investigate how alkali treatment affected the AP fibers' morphology, chemical composition, tensile capabilities, morphological changes, structural changes, and thermal degradation (APFs). The SEM image and pXRD analyses support the improved surface roughness of the fiber, and that was seen after the alkaline treatment. From XRD analysis, the fiber crystallinity index (54.65%) was improved and it was connected to their SEM pictograms in comparison to untreated APF. Alkali-treated AP fibers include a higher percentage of chemical components including cellulose (51.38%) and ash (5.13%). Alkali-treated AP fibers have a lower amount of hemi-cellulose (30.30%), lignin (20.96%), pectin (8.77%), wax (0.12%), and moisture (13.44%) than untreated APF. Their low density and high cellulosic content will improve their ability to fiber matrices. The thermal behavior of AP fiber at various temperatures was demonstrated by TG-DTA analysis, and tensile strength was also investigated., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF