15 results on '"keller-segel system"'
Search Results
2. Characterization of Initial Layer for Fast Chemical Diffusion Limit in Keller-Segel System.
- Author
-
Li, Min and Xiang, Zhaoyin
- Abstract
This paper investigates the fast chemical diffusion limit from a parabolic-parabolic Keller-Segel system to the corresponding parabolic-elliptic Keller-Segel system by constructing approximate solutions with an appropriate order via an asymptotic expansion. Nonlinear stability of the precise initial layer is characterized with an exact convergence rate by using basic energy method. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Global dynamics in a chemotaxis system involving nonlinear indirect signal secretion and logistic source.
- Author
-
Wang, Chang-Jian, Wang, Pengyan, and Zhu, Xincai
- Subjects
- *
NEUMANN boundary conditions , *NONLINEAR systems , *SYSTEM dynamics , *CHEMOTAXIS , *SECRETION , *NONLINEAR functions - Abstract
This paper is concerned with a quasilinear parabolic–parabolic–elliptic chemotaxis system u t = ∇ · (φ (u) ∇ u - ψ (u) ∇ v) + a u - b u γ , x ∈ Ω , t > 0 , v t = Δ v - v + w γ 1 , x ∈ Ω , t > 0 , 0 = Δ w - w + u γ 2 , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in a bounded and smooth domain Ω ⊂ R n (n ≥ 1) , where a , b , γ 1 , γ 2 > 0 , γ > 1 , φ and ψ are nonlinear functions satisfying φ (s) ≥ a 0 (s + 1) α and | ψ (s) | ≤ b 0 s (1 + s) β - 1 for all s ≥ 0 with a 0 , b 0 > 0 and α , β ∈ R. When β + γ 1 γ 2 < max { n + 2 n + α , γ } , then the system has a classical solution which is globally bounded in time. Moreover, when β + γ 1 γ 2 = max { n + 2 n + α , γ } , it has been shown that the existence of global bounded classical solution depends on the size of coefficient b and initial data u 0. Furthermore, we consider a specific system with γ 1 = 1 , γ 2 = κ and γ = κ + 1 for κ > 0. If b > 0 is sufficiently large, the global classical solution(u, v, w) exponentially converges to the steady state ((a b) 1 κ , a b , a b) in L ∞ norm as t → ∞ , where convergence rate is explicitly expressed in terms of the system parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities.
- Author
-
Wang, Zhi-An and Zheng, Jiashan
- Abstract
This paper establishes the global uniform-in-time boundedness of solutions to the following Keller-Segel system with signal-dependent diffusion and chemotaxis { u t = ∇ ⋅ (γ (v) ∇ u − u ϕ (v) ∇ v) , x ∈ Ω , t > 0 , v t = d Δ v − v + u , x ∈ Ω , t > 0
in a bounded domain Ω ⊂ R N (N ≤ 4) with smooth boundary, where the density-dependent motility functions γ (v) and ϕ (v) denote the diffusive and chemotactic coefficients, respectively. The model was originally proposed by Keller and Segel in (J. Theor. Biol. 30:225–234, 1970) to describe the aggregation phase of Dictyostelium discoideum cells, where the two motility functions satisfy a proportional relation ϕ (v) = (α − 1) γ ′ (v) with α > 0 denoting the ratio of effective body length (i.e. distance between receptors) to the step size. The major technical difficulty in the analysis is the possible degeneracy of diffusion. In this work, we show that if γ (v) > 0 and ϕ (v) > 0 are smooth on [ 0 , ∞) and satisfy inf v ≥ 0 d γ (v) v ϕ (v) (v ϕ (v) + d − γ (v)) + > N 2 ,
then the above Keller-Segel system subject to Neumann boundary conditions admits classical solutions uniformly bounded in time. The main idea of proving our results is the estimates of a weighted functional ∫ Ω u p v − q d x for p > N 2 by choosing a suitable exponent p depending on the unknown v , by which we are able to derive a uniform L ∞ -norm of v and hence rule out the diffusion degeneracy. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
5. Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization.
- Author
-
Htwe, Myowin, Pang, Peter Y. H., and Wang, Yifu
- Subjects
- *
CLASSICAL solutions (Mathematics) , *CORALS , *BEHAVIOR - Abstract
We are concerned with the Keller–Segel–Navier–Stokes system ρ t + u · ∇ ρ = Δ ρ - ∇ · (ρ S (x , ρ , c) ∇ c) - ρ m , (x , t) ∈ Ω × (0 , T) , m t + u · ∇ m = Δ m - ρ m , (x , t) ∈ Ω × (0 , T) , c t + u · ∇ c = Δ c - c + m , (x , t) ∈ Ω × (0 , T) , u t + (u · ∇) u = Δ u - ∇ P + (ρ + m) ∇ ϕ , ∇ · u = 0 , (x , t) ∈ Ω × (0 , T) subject to the boundary condition (∇ ρ - ρ S (x , ρ , c) ∇ c) · ν = ∇ m · ν = ∇ c · ν = 0 , u = 0 in a bounded smooth domain Ω ⊂ R 3 . It is shown that this problem admits a global classical solution with exponential decay properties when S ∈ C 2 (Ω ¯ × [ 0 , ∞) 2) 3 × 3 satisfies | S (x , ρ , c) | ≤ C S for some C S > 0 , and the initial data satisfy certain smallness conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. The fast signal diffusion limit in nonlinear chemotaxis systems.
- Author
-
Freitag, Marcel
- Subjects
NONLINEAR systems ,CHEMOTAXIS ,DIFFUSION ,NONLINEAR equations - Abstract
For n≥2 let Ω⊂Rn be a bounded domain with smooth boundary as well as some nonnegative functions 0≢u0∈W1,∞(Ω) and v0∈W1,∞(Ω). With ε∈(0,1) we want to know in which sense (if any!) solutions to the parabolic-parabolic system⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩ut=∇⋅((u+1)m−1∇u)−∇⋅(u∇v)in Ω×(0,∞),εvt=Δv−v+uin Ω×(0,∞),∂u∂ν=∂v∂ν=0on ∂Ω×(0,∞),u(⋅,0)=u0, v(⋅,0)=v0in Ωconverge to those of the system where ε=0 and where the initial condition for v has been removed. We will see in our theorem that indeed the solutions of these systems converge in a meaningful way if m>1+n−2n without the need for further conditions, e. g. on the size of ∥u0∥Lp(Ω) for some p∈[1,∞]. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
7. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations.
- Author
-
Burczak, Jan and Granero-Belinchón, Rafael
- Subjects
LOGISTIC functions (Mathematics) ,EQUATIONS ,PARABOLIC operators ,DIFFUSION - Abstract
In this paper we consider a d-dimensional (d=1,2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order α∈(0,2). We prove uniform in time boundedness of its solution in the supercritical range α>d(1−c), where c is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for ∥u(t)−u∞∥L∞→0, where u∞≡1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
8. Suppression of blow up by a logistic source in 2D Keller–Segel system with fractional dissipation.
- Author
-
Burczak, Jan and Granero-Belinchón, Rafael
- Subjects
- *
BLOWING up (Algebraic geometry) , *MATHEMATICAL singularities , *MATHEMATICAL transformations , *ENERGY dissipation , *FORCE & energy - Abstract
We consider a two dimensional parabolic–elliptic Keller–Segel equation with a fractional diffusion of order α ∈ ( 0 , 2 ) and a logistic term. In the case of an analogous problem with standard diffusion, introduction of the logistic term, well motivated by biological applications, results in global smoothness of solutions (i.e. suppression of blowup ), compare Tello & Winkler [48] . We show that this phenomenon extends into potentially less regular case of fractional diffusions. Namely, we obtain existence of global in time regular solutions emanating from initial data with no size restrictions for c < α < 2 , where c ∈ ( 0 , 2 ) depends on the equation's parameters. For an even wider range of α ′ s , we prove existence of global in time weak solution for general initial data. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
9. The Keller–Segel system on bounded convex domains in critical spaces
- Author
-
Hieber, Matthias, Kress, Klaus, and Stinner, Christian
- Published
- 2021
- Full Text
- View/download PDF
10. Global boundedness to a chemotaxis system with singular sensitivity and logistic source.
- Author
-
Zhao, Xiangdong and Zheng, Sining
- Subjects
- *
MATHEMATICAL logic , *NEUMANN boundary conditions , *MATHEMATICAL domains , *BOUNDED arithmetics , *CHEMOTAXIS , *MATHEMATICAL singularities - Abstract
We consider the parabolic-parabolic Keller-Segel system with singular sensitivity and logistic source: $$ u_t=\Delta u-\chi \nabla \cdot (\frac{u}{v}\nabla v) +ru-\mu u^2$$ , $$v_t=\Delta v-v+u$$ under the homogeneous Neumann boundary conditions in a smooth bounded domain $$\Omega \subset \mathbb {R}^2$$ , $$\chi ,\mu >0$$ and $$r\in \mathbb {R}$$ . It is proved that the system exists globally bounded classical solutions if $$r>\frac{\chi ^2}{4}$$ for $$0<\chi \le 2$$ , or $$r>\chi -1$$ for $$\chi >2$$ . [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
11. Uniqueness and long time asymptotics for the parabolic–parabolic Keller–Segel equation.
- Author
-
Carrapatoso, K. and Mischler, S.
- Subjects
- *
UNIQUENESS (Mathematics) , *ASYMPTOTIC expansions , *NAVIER-Stokes equations , *FREE energy (Thermodynamics) , *DATA analysis - Abstract
The present paper deals with the parabolic–parabolic Keller–Segel equation in the plane in the general framework of weak (or “free energy”) solutions associated to initial data with finite massM<8π, finite second log-moment, and finite entropy. The aim of the paper is twofold: (1) We prove the uniqueness of the “free energy” solution. The proof uses a DiPerna–Lions renormalizing argument, which makes possible to get the “optimal regularity” as well as an estimate of the difference of two possible solutions in the criticalL4∕3Lebesgue norm similarly as for the 2dvorticity Navier–Stokes equation. (2) We prove a radially symmetric and polynomial weightedexponential stability of the self-similar profile in the quasiparabolic–elliptic regime. The proof is based on a perturbation argument, which takes advantage of the exponential stability of the self-similar profile for the parabolic–elliptic Keller–Segel equation established by Campos–Dolbeault and Egana–Mischler. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
12. Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller–Segel system in the plane.
- Author
-
Corrias, L., Escobedo, M., and Matos, J.
- Subjects
- *
EXISTENCE theorems , *UNIQUENESS (Mathematics) , *PARABOLIC differential equations , *KERNEL (Mathematics) , *MATHEMATICAL proofs - Abstract
In the present article we consider several issues concerning the doubly parabolic Keller–Segel system (1.1)–(1.2) in the plane, when the initial data belong to critical scaling-invariant Lebesgue spaces. More specifically, we analyze the global existence of integral solutions, their optimal time decay, uniqueness and positivity, together with the uniqueness of self-similar solutions. In particular, we prove that there exist integral solutions of any mass, provided that ε > 0 is sufficiently large. With those results at hand, we are then able to study the large time behavior of global solutions and prove that in the absence of the degradation term ( α = 0 ) the solutions behave like self-similar solutions, while in the presence of the degradation term ( α > 0 ) the global solutions behave like the heat kernel. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
13. Analysis of a non-local and non-linear Fokker-Planck model for cell crawling migration
- Author
-
Etchegaray, Christèle, Meunier, Nicolas, Voituriez, Raphael, Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mathématiques d'Orsay ( LM-Orsay ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
global existence ,entropy method ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,asymptotic convergence ,35B60 ,35B44 ,35Q92 ,92C17 ,92B05 ,Keller-Segel system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Cell polarisation ,blow-up ,Analysis of PDEs (math.AP) ,Quantitative Biology::Cell Behavior - Abstract
Cell movement has essential functions in development, immunity and cancer. Various cell migration patterns have been reported and a general rule has recently emerged, the so-called UCSP (Universal Coupling between cell Speed and cell Persistence), [30]. This rule says that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to migration speed. In [30], the advection of polarity cues by a dynamic actin cytoskeleton undergoing flows at the cellular scale was proposed as a first explanation of this universal coupling. Here, following ideas proposed in [30], we present and study a simple model to describe motility initiation in crawling cells. It consists of a non-linear and non-local Fokker-Planck equation, with a coupling involving the trace value on the boundary. In the one-dimensional case we characterize the following behaviours: solutions are global if the mass is below the critical mass, and they can blow-up in finite time above the critical mass. In addition, we prove a quantitative convergence result using relative entropy techniques.
- Published
- 2017
14. Numerical simulation of the dynamics of molecular markers involved in cell polarisation
- Author
-
Calvez , Vincent, Meunier , Nicolas, Muller , Nicolas, Voituriez , Raphael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), Numerical Medicine (NUMED), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), ANR-11-JS01-0003,MODPOL,Modèles mathématiques pour la polarisation cellulaire(2011), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques Pures et Appliquées ( UMPA-ENSL ), École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ), Numerical Medicine ( NUMED ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Unité de Mathématiques Pures et Appliquées ( UMPA-ENSL ), École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ), and ANR-11-JS01-0003,MODPOL,Modèles mathématiques pour la polarisation cellulaire ( 2011 )
- Subjects
global existence ,Keller-Segel system ,65M08 ,92B05 ,92C17 ,35B44 ,35Q92 ,Quantitative Biology::Cell Behavior ,numerical simulations ,Quantitative Biology::Subcellular Processes ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Cell polarisation ,blow-up ,Analysis of PDEs (math.AP) - Abstract
A cell is polarised when it has developed a main axis of organisation through the reorganisation of its cytosqueleton and its intracellular organelles. Polarisation can occur spontaneously or be triggered by external signals, like gradients of signaling molecules ... In this work, we study mathematical models for cell polarisation. These models are based on nonlinear convection-diffusion equations. The nonlinearity in the transport term expresses the positive loop between the level of protein concentration localised in a small area of the cell membrane and the number of new proteins that will be convected to the same area. We perform numerical simulations and we illustrate that these models are rich enough to describe the apparition of a polarisome., Comment: 15 pages
- Published
- 2013
- Full Text
- View/download PDF
15. Numerical simulation on a cell polarisation model: the polar case
- Author
-
Calvez, Vincent, Meunier, Nicolas, Muller, Nicolas, Voituriez, Raphael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), Numerical Medicine (NUMED), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), ANR-11-JS01-0003,MODPOL,Modèles mathématiques pour la polarisation cellulaire(2011), Unité de Mathématiques Pures et Appliquées ( UMPA-ENSL ), École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ), Numerical Medicine ( NUMED ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Unité de Mathématiques Pures et Appliquées ( UMPA-ENSL ), École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Lyon ( ENS Lyon ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ), ANR-11-JS01-0003,MODPOL,Modèles mathématiques pour la polarisation cellulaire ( 2011 ), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
numerical simulations ,global existence ,Mathematics - Analysis of PDEs ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Keller-Segel system ,65M08 ,92B05 ,92C17 ,35B44 ,35Q92 ,Cell polarisation ,blow-up ,Analysis of PDEs (math.AP) ,Quantitative Biology::Cell Behavior - Abstract
When it is polarised, a cell develops an asymmetric distribution of specific molecular markers, cytoskeleton and cell membrane shape. Polarisation can occur spontaneously or be triggered by external signals, like gradients of signalling molecules... In this work, we use the published models of cell polarisation and we set a numerical analysis for these models. They are based on nonlinear convection-diffusion equations and the nonlinearity in the transport term expresses the positive loop between the level of protein concentration localised in a small area of the cell membrane and the number of new proteins that will be convected to the same area. We perform numerical simulations and we illustrate that these models are rich enough to describe the apparition of a polarisome., 20 pages. arXiv admin note: substantial text overlap with arXiv:1301.3807
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.