1. Voltage-controlled ON−OFF ferromagnetism at room temperature in a single metal oxide film
- Author
-
Christophe Detavernier, Andreas Wagner, Sònia Estradé, Veronica Sireus, Maik Butterling, Dustin A. Gilbert, Enric Menéndez, Peyton D. Murray, Francesca Peiró, Jolien Dendooven, Josep Nogués, Maciej Oskar Liedke, Pau Torruella, Jordi Sort, Eva Pellicer, Kai Liu, Alberto Manuel Quintana, Agencia Estatal de Investigación (España), European Research Council, Generalitat de Catalunya, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, National Science Foundation (US), Quintana, Alberto, Menéndez, Enric, Dendooven, Jolien, Murray, Peyton D., Gilbert, Dustin A., Liu, Kai, Pellicer, Eva, Sort, Jordi, Quintana, Alberto [0000-0002-9813-735X], Menéndez, Enric [0000-0003-3809-2863], Dendooven, Jolien [0000-0002-2385-3693], Murray, Peyton D. [0000-0003-0389-0611], Gilbert, Dustin A. [0000-0003-3747-3883], Liu, Kai [0000-0001-9413-6782], Pellicer, Eva [0000-0002-8901-0998], and Sort, Jordi [0000-0003-1213-3639]
- Subjects
magnetic phase transition ,Materials science ,on-off ferromagnetism ,Magnetism ,Voltage control of magnetism ,Oxide ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,chemistry.chemical_compound ,Paramagnetism ,Co3O4 ,Electrolyte ,MD Multidisciplinary ,General Materials Science ,Multiferroics ,Nanoscience & Nanotechnology ,spintronic ,Spintronics ,business.industry ,Ion migration ,On−off ferromagnetism ,ionic transport ,positron annihilation ,General Engineering ,Heterojunction ,Magnetostriction ,021001 nanoscience & nanotechnology ,electric field ,3. Good health ,0104 chemical sciences ,chemistry ,Ferromagnetism ,Optoelectronics ,0210 nano-technology ,business ,Magneto-ionics - Abstract
Electric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena. Nevertheless, magneto-ionics typically requires heat treatments and multicomponent heterostructures. Here we report on the electrolyte-gated and defect-mediated O and Co transport in a Co3O4 single layer which allows for room-temperature voltage-controlled ON-OFF ferromagnetism (magnetic switch) via internal reduction/oxidation processes. Negative voltages partially reduce Co3O4 to Co (ferromagnetism: ON), resulting in graded films including Co- and O-rich areas. Positive bias oxidizes Co back to Co3O4 (paramagnetism: OFF). This electric-field-induced atomic-scale reconfiguration process is compositionally, structurally, and magnetically reversible and self-sustained, since no oxygen source other than the Co3O4 itself is required. This process could lead to electric-field-controlled device concepts for spintronics., Financial support by the European Research Council (SPINPORICS 2014-Consolidator Grant, Agreement No. 648454), the Spanish Government (Projects MAT2017-86357-C3-1-R and associated FEDER), the Generalitat de Catalunya (2017-SGR-292) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665919 is acknowledged. E.P. is grateful to MINECO for the “Ramon y Cajal” contract (RYC-2012-10839). The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. ICN2 also acknowledges the support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). Work at UCD is supported by the US NSF (DMR1610060 and ECCS-1611424).
- Published
- 2021
- Full Text
- View/download PDF