1. K-1,K-3-covering red and blue points in the plane
- Author
-
Ábrego, Bernardo M., Fernández Merchant, Silvia, Kano, Mikio, Orden, David, Pérez Lantero, Pablo, Seara Ojea, Carlos, Tejel Altarriba, Francisco Javier, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications
- Subjects
star ,Informàtica--Matemàtica ,red and blue points ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Computer science--Mathematics ,68 Computer science::68R Discrete mathematics in relation to computer science [Classificació AMS] ,Non-crossing geometric graph ,covering - Abstract
We say that a finite set of red and blue points in the plane in general position can be K1,3-covered if the set can be partitioned into subsets of size 4, with 3 points of one color and 1 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set R of r red points and a set B of b blue points in the plane in general position, how many points of R ¿ B can be K1,3-covered? and we prove the following results: (1) If r = 3g + h and b = 3h + g, for some non-negative integers g and h, then there are point sets R ¿ B, like {1, 3}-equitable sets (i.e., r = 3b or b = 3r) and linearly separable sets, that can be K1,3-covered. (2) If r = 3g + h, b = 3h + g and the points in R ¿ B are in convex position, then at least r + b - 4 points can be K1,3-covered, and this bound is tight. (3) There are arbitrarily large point sets R ¿ B in general position, with r = b + 1, such that at most r + b - 5 points can be K1,3-covered. (4) If b = r = 3b, then at least 8 9 (r + b - 8) points of R ¿ B can be K1,3-covered. For r > 3b, there are too many red points and at least r - 3b of them will remain uncovered in any K1,3-covering.
- Published
- 2019