1. Identifying therapeutic implications of cancer stem cells in human and canine insulinoma
- Author
-
Capodanno, Ylenia, Argyle, David, and Pang, Lisa
- Subjects
636.7 ,pancreatic neuroendocrine tumours ,PNETs ,Insulinoma ,cancer stem cells ,biological signalling pathways ,Notch pathway - Abstract
Pancreatic neuroendocrine tumours (PNETs) are the most common neuroendocrine tumours diagnosed in humans and dogs. Due to the highly heterogeneous nature of these tumours, definitive data are still lacking over the molecular mechanisms involved in their cancerous behaviour. This study focused on insulinoma (INS), as it is the most commonly diagnosed PNET in human and veterinary oncology. INS is an insulin-producing tumour that causes a hypoglycaemic syndrome related to the excessive insulin production. In humans, it is often a small benign neoplasm readily curable by surgical resection whereas, in dogs, INS is often malignant. Despite current treatment modalities, malignant canine and human INS have a poor prognosis as patients tend to develop metastases in liver and lymph nodes that do not respond to current therapies. From a comparative oncology perspective, the close resemblance of canine and human malignant INS makes canine INS an interesting study model for human INS. Cancer stem cells (CSCs) are critical for the engraftment and chemoresistance of many tumours. Although CSCs have been isolated from a range of solid tumours, a comprehensive characterisation of INS CSCs has not yet been reported. In this study, it was confirmed that INS CSCs can be enriched and are potential targets for novel INS therapies. Highly invasive and tumourigenic human and canine INS CSCs were successfully isolated and exhibited greater resistance to chemotherapy, which may play a significant role in the poor prognosis of this disease. To date, the mechanisms by which tumours spread and the clinical causes of chemoresistance remain only partially understood. Here, RNA-sequencing analysis was performed over a small set of canine INS tumour samples in order to identify mechanisms involved in INS carcinogenesis through different stages of the disease. Preliminary data showed that distinct gene profiles characterised early and late stage of canine INS. Interestingly, differential gene expression and gene pathways analysis, highlighted that sets of genes involved in pancreatic embryogenesis and insulin secretion were overexpressed in canine primary INS lesions compared with normal pancreas. The Notch pathway is fundamental in pancreatic embryogenesis and it has been previously associated with carcinogenesis of neuroendocrine tumours and with the CSC phenotype. Protein analysis showed that the Notch pathway is activated in both human and canine INS CSCs, particularly when treated with chemotherapy, indicating that the Notch pathway may be involved in chemoresistance. Additionally, it was demonstrated that inhibition of the Notch pathway decreased INS CSCs' survival and chemoresistance, both in vitro and in vivo. These findings provide preclinical evidence that anti-Notch therapy may improve outcomes for patients with malignant INS.
- Published
- 2018