5 results on '"Adams, Justin W."'
Search Results
2. The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes.
- Author
-
McMenamin, Paul G., Hussey, Daniel, Chin, Daniel, Alam, Waafiqa, Quayle, Michelle R., Coupland, Sarah E., and Adams, Justin W.
- Subjects
ARCHIVES ,COLLECTION & preservation of biological specimens ,COLOR ,COMPUTED tomography ,DIGITAL diagnostic imaging ,DISEASES ,GRAPHIC arts ,GUMS & resins ,MEDICAL education ,PATHOLOGY ,PICTURE archiving & communication systems ,ULTRAVIOLET radiation ,MICROTECHNIQUE ,TEACHING methods ,THREE-dimensional printing ,DATA curation - Abstract
The teaching of medical pathology has undergone significant change in the last 30–40 years, especially in the context of employing bottled specimens or 'pots' in classroom settings. The reduction in post-mortem based teaching in medical training programs has resulted in less focus being placed on the ability of students to describe the gross anatomical pathology of specimens. Financial considerations involved in employing staff to maintain bottled specimens, space constraints and concerns with health and safety of staff and student laboratories have meant that many institutions have decommissioned their pathology collections. This report details how full-colour surface scanning coupled with CT scanning and 3 D printing allows the digital archiving of gross pathological specimens and the production of reproductions or replicas of preserved human anatomical pathology specimens that obviates many of the above issues. With modern UV curable resin printing technology, it is possible to achieve photographic quality accurate replicas comparable to the original specimens in many aspects except haptic quality. Accurate 3 D reproductions of human pathology specimens offer many advantages over traditional bottled specimens including the capacity to generate multiple copies and their use in any educational setting giving access to a broader range of potential learners and users. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
3. Three‐Dimensional Printing of Archived Human Fetal Material for Teaching Purposes.
- Author
-
Young, Julia C., Quayle, Michelle R., Adams, Justin W., Bertram, John F., and McMenamin, Paul G.
- Abstract
The practical aspect of human developmental biology education is often limited to the observation and use of animal models to illustrate developmental anatomy. This is due in part to the difficulty of accessing human embryonic and fetal specimens, and the sensitivity inherent to presenting these specimens as teaching materials. This report presents a new approach using three‐dimensional (3D) printed replicas of actual human materials in practical classes, thus allowing for the inclusion of accurate examples of human developmental anatomy in the educational context. A series of 3D prints have been produced from digital data collected by computed tomography (CT) imaging of an archived series of preserved human embryonic and fetal specimens. The final versions of 3D prints have been generated in a range of single or multiple materials to illustrate the progression of human development, including the development of internal anatomy. Furthermore, multiple copies of each replica have been printed for large group teaching. In addition to the educational benefit of examining accurate 3D replicas, this approach lessens the potential for adverse student reaction (due to cultural background or personal experience) to observing actual human embryonic/fetal anatomical specimens, and reduces the potential of damage or loss of original specimens. This approach, in combination with ongoing improvements in the management and analysis of digital data and advances in scanning technology, has enormous potential to allow embryology students access to both local and international collections of human gestational material. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.
- Author
-
Lim, Kah Heng Alexander, Loo, Zhou Yaw, Goldie, Stephen J., Adams, Justin W., and McMenamin, Paul G.
- Abstract
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different ( P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group ( P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
5. The production of anatomical teaching resources using three-dimensional (3D) printing technology.
- Author
-
McMenamin, Paul G., Quayle, Michelle R., McHenry, Colin R., and Adams, Justin W.
- Abstract
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. Anat Sci Educ 7: 479-486. © 2014 American Association of Anatomists. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.