1. The existence of ground state normalized solution for Kirchhoff equation.
- Author
-
He, Qihan and Lv, Zongyan
- Subjects
- *
EQUATIONS - Abstract
In this paper, we study the existence of ground state solution for the following Kirchhoff equation with combined nonlinearities \[ -\left(a+b\displaystyle\int_{\mathbb{R}^N} |\nabla u|^2\right)\Delta u=\lambda u+|u|^{p-2}u+\mu |u|^{q-2}u \ \hbox{in}\ \mathbb{R}^N, \quad 1\leq N\leq 3 \] − (a + b ∫ R N | ∇u | 2) Δu = λu + | u | p − 2 u + μ | u | q − 2 u in R N , 1 ≤ N ≤ 3 with prescribed mass $ \int _{\mathbb {R}^N} u^2=c^2 $ ∫ R N u 2 = c 2 , where $ a{ \gt }0,b{ \gt }0,c{ \gt }0 $ a > 0 , b > 0 , c > 0 , $ \mu { \lt }0 $ μ < 0 , $ 2{ \lt }q\leq 2+\frac {8}{N}{ \lt }p{ \lt }2^{*} $ 2 < q ≤ 2 + 8 N < p < 2 ∗ . Under certain assumptions on the parameter μ, we obtain the existence of normalized solution $ (\tilde {u},\lambda _c)\in S_c \times \mathbb {R} $ (u ~ , λ c) ∈ S c × R , where $ S_c=\{ u\in H^1(\mathbb {R}^N): \int _{\mathbb {R}^N} u^2=c^2 \} $ S c = { u ∈ H 1 (R N) : ∫ R N u 2 = c 2 }. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF