1. Remarks on the Stabilization of Large-Scale Growth in the 2D Kuramoto–Sivashinsky Equation.
- Author
-
Larios, Adam and Martinez, Vincent R.
- Abstract
In this article, some elementary observations are is made regarding the behavior of solutions to the two-dimensional curl-free Burgers equation which suggests the distinguished role played by the scalar divergence field in determining the dynamics of the solution. These observations inspire a new divergence-based regularity condition for the two-dimensional Kuramoto–Sivashinsky equation (KSE) that provides conceptual clarity to the nature of the potential blow-up mechanism for this system. The relation of this regularity criterion to the Ladyzhenskaya–Prodi–Serrin-type criterion for the KSE is also established, thus providing the basis for the development of an alternative framework of regularity criterion for this equation based solely on the low-mode behavior of its solutions. The article concludes by applying these ideas to identify a conceptually simple modification of KSE that yields globally regular solutions, as well as providing a straightforward verification of this regularity criterion to establish global regularity of solutions to the 2D Burgers–Sivashinsky equation. The proofs are direct, elementary, and concise. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF