1. Fine-scale automatic mapping of living Posidonia oceanica seagrass beds with underwater photogrammetry
- Author
-
Sandra Luque, Florian Holon, Pierre Boissery, Guilhem Marre, Julie Deter, Andromède Océanologie, Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Agence de l'eau Rhône Méditérranée Corse, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), and French Water Agency (Agence de l'eau Rhone-Mediterranee-Corse) 2017-1118LabCom InToSea (ANR Labcom 2, Universite de Montpellier UMR 9190 MARBEC/Andromede Oceanologie) French National Research Agency (ANR) Andromede Oceanologie
- Subjects
0106 biological sciences ,Monitoring ,010504 meteorology & atmospheric sciences ,Submerged aquatic vegetation ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,Aquatic Science ,Underwater photogrammetry ,01 natural sciences ,Reconstruction uncertainty ,14. Life underwater ,Underwater ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Remote sensing ,Ecology ,biology ,010604 marine biology & hydrobiology ,Fragmentation (computing) ,Posidonia oceanica ,15. Life on land ,biology.organism_classification ,Current (stream) ,Benthic habitat mapping ,Photogrammetry ,Habitat destruction ,Seagrass ,[SDE]Environmental Sciences ,Environmental science ,Scale (map) - Abstract
The Mediterranean seagrass Posidonia oceanica, which provides highly valuable ecosystem services, is subject to increasing anthropogenic pressures, causing habitat loss or fragmentation. Whilst airborne images and acoustic data can be used for monitoring seagrass coverage at a macro-scale and over long time periods, monitoring its health in the short term requires precision mapping in order to assess current regression/progression of individual meadows. However, current fine-scale underwater techniques in the field are imprecise and time-demanding. We propose an automatic classification approach based on underwater photogrammetry for an operational, cost- and time-effective fine-scale monitoring method. The method uses a property of the sparse cloud generated during bundle adjustment—the reconstruction uncertainty—to map seagrass patches. The mean precision, recall and F1 score of the method over 21 study sites with different morphologies were 0.79, 0.91 and 0.84, respectively. However, the fragmentation level of the meadows had a significant negative effect on classification performances. The temporal monitoring of 3 sites using this method proved its operability and showed a positive evolution index of the corresponding meadows over a period of 3 yr. This method is generalizable for most encountered configurations and can be integrated in a large monitoring system, as it enables the production of numerous seagrass maps over a short period of time. Moreover, our methodology could be generalized and applied in the study of other submerged aquatic vegetation by adjusting the method’s parameters.
- Published
- 2020
- Full Text
- View/download PDF