1. Simplified simulation of rock avalanches and subsequent debris flows with a single thin-layer model: Application to the Prêcheur river (Martinique, Lesser Antilles)
- Author
-
Sophie Lagarde, Martin Mergili, Yoann Legendre, Gilles Grandjean, Clara Levy, Anne Mangeney, Jean-Christophe Komorowski, Yannick Thiery, Anne-Marie Lejeune, Arnaud Lemarchand, Benoit Vittecoq, Marc Peruzzetto, Fabrice R. Fontaine, Thomas Dewez, Anne Le Friant, Jean-Marie Saurel, Aude Nachbaur, Valérie Clouard, Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire volcanologique et sismologique de martinique (OVSM), Institut de Physique du Globe de Paris, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut de Physique du Globe de Paris (IPG Paris), Institut des Sciences de la Terre de Paris (iSTeP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Karl-Franzens-Universität Graz, and ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018)
- Subjects
landslide ,shallow-water ,010504 meteorology & atmospheric sciences ,Field data ,Thin layer ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Debris flow ,lahar ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Geomorphology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Geology ,modeling ,Geotechnical Engineering and Engineering Geology ,Debris ,Volcano ,13. Climate action ,Model application ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,River catchment ,Martinique - Abstract
International audience; This work focuses on the use of thin-layer models for simulating fast gravitational flows for hazard assessment. Such simulations are sometimes difficult to carry out because of the uncertainty on initial conditions and on simulation parameters. In this study, we aggregate various field data to constrain realistic initial conditions and to calibrate the model parameters. By using the SHALTOP numerical code, we choose a simple and empirical rheology to model the flow (no more than two parameters), but we model more finely the geometrical interactions between the flow and the topography. We can thus model both a rock avalanche, and the subsequent remobilization of the deposits as a high discharge debris flow.Using the Prêcheur river catchment (Martinique, Lesser Antilles) as a case study, we focus on extreme events with a high potential to impact populations and infrastructures. We use geological and geomorphological data, topographic surveys, seismic recordings and granulometric analysis to define realistic simulation scenarios and determine the main characteristics of documented events. The latter are then reproduced to calibrate rheological parameters. With a single rheological parameter and the Coulomb rheology, we thus model the emplacement and main dynamic characteristics of a recent rock avalanche, as well as the travel duration and flooded area of a documented high discharge debris flow. Then, in a forward prediction simulation, we model a possible 1.9x10^6 m^3 rock avalanche, and the instantaneous remobilization of the resulting deposits as a high-discharge debris flow. We show that successive collapses allow to better reproduce the dynamics of the rock avalanche, but do not change the geometry of the final deposits, and thus do not influence the initial conditions of the subsequent debris flow simulation. A progressive remobilization of the materials slows down the debris flow and limits overflow, in comparison to instantaneous release. However, we show that high discharge debris flows, such as the one considered for model calibration, are better reproduced with an instantaneous initiation. The range of travel times measured for other significant debris flows in the Prêcheur river is consistent with our simulation results, with various rheological parameters and the Coulomb or Voellmy rheology.
- Published
- 2022
- Full Text
- View/download PDF