1. Decoding the microstructural properties of white matter using realistic models
- Author
-
Kwok-Shing Chan, Riccardo Metere, Jeroen Mollink, Christian Licht, José P. Marques, Anne-Marie van Cappellen van Walsum, Renaud Hédouin, Neuroimagerie: méthodes et applications (Empenn), Institut National de la Santé et de la Recherche Médicale (INSERM)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Donders Institute for Brain, Cognition and Behaviour, Radboud University [Nijmegen], Medical Faculty [Mannheim], hedouin, renaud, University Hospital Mannheim | Universitätsmedizin Mannheim, Empenn, Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Radboud university [Nijmegen]
- Subjects
Work (thermodynamics) ,Cognitive Neuroscience ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,Neuroimaging ,Neurosciences. Biological psychiatry. Neuropsychiatry ,Signal ,050105 experimental psychology ,150 000 MR Techniques in Brain Function ,030218 nuclear medicine & medical imaging ,Overdetermined system ,Magnetic susceptibility ,03 medical and health sciences ,0302 clinical medicine ,Deep Learning ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Humans ,0501 psychology and cognitive sciences ,Computer Simulation ,White matter models ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Anisotropy ,320 000 MR Structural Quantitative Imaging ,Physics ,Aged, 80 and over ,Pixel ,Orientation (computer vision) ,05 social sciences ,Models, Theoretical ,Magnetostatics ,Disorders of movement Donders Center for Medical Neuroscience [Radboudumc 3] ,Magnetic Resonance Imaging ,White Matter ,Magnetic field ,Microscopy, Electron ,Deep learning network ,Neurology ,Feasibility Studies ,Female ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Autopsy ,Biological system ,030217 neurology & neurosurgery ,Decoding methods ,RC321-571 ,Microstructural properties - Abstract
Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better description of the signal behaviour observed.In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the decoded metrics.[Highlights] - A pipeline to generate realistic white models of arbitrary fiber volume fraction and g-ratio is presented; - We present a methodology to simulated the gradient echo signal from segmented 2D and 3D models of white matter, which takes into account the interaction of the static magnetic field with the anisotropic susceptibility of the myelin phospholipids; - Deep Learning Networks can be used to decode microstructural white matter parameters from the signal of multi-echo multi-orientation data
- Published
- 2021
- Full Text
- View/download PDF