1. Towards the prediction of the vocal tract shape from the sequence of phonemes to be articulated
- Author
-
Karyna Isaieva, Pierre-André Vuissoz, Yves Laprie, Justine Leclere, Vinicius Ribeiro, Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Imagerie Adaptative Diagnostique et Interventionnelle (IADI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Souza Ribeiro, Vinicius de Paulo
- Subjects
Speech production ,Generalization ,Computer science ,speech production ,Speech recognition ,Articulator ,020206 networking & telecommunications ,02 engineering and technology ,[INFO] Computer Science [cs] ,neural networks ,Euclidean distance ,030507 speech-language pathology & audiology ,03 medical and health sciences ,Position (vector) ,Data efficiency ,0202 electrical engineering, electronic engineering, information engineering ,[INFO]Computer Science [cs] ,0305 other medical science ,Set (psychology) ,phoneme-to-articulatory ,Vocal tract - Abstract
International audience; In this work, we address the prediction of speech articulators' temporal geometric position from the sequence of phonemes to be articulated. We start from a set of real-time MRI sequences uttered by a female French speaker. The contours of five articulators were tracked automatically in each of the frames in the MRI video. Then, we explore the capacity of a bidirectional GRU to correctly predict each articulator's shape and position given the sequence of phonemes and their duration. We propose a 5-fold cross-validation experiment to evaluate the generalization capacity of the model. In a second experiment, we evaluate our model's data efficiency by reducing training data. We evaluate the point-to-point Euclidean distance and the Pearson's correlations along time between the predicted and the target shapes. We also evaluate produced shapes of the critical articulators of specific phonemes. We show that our model can achieve good results with minimal data, producing very realistic vocal tract shapes.
- Published
- 2021
- Full Text
- View/download PDF