1. RhoA- and Cdc42-induced antagonistic forces underlie symmetry breaking and spindle rotation in mouse oocytes
- Author
-
Raphaël Clément, Anne Bourdais, Benoit Dehapiot, Virginie Carrière, Guillaume Halet, Sébastien Huet, Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), ATIP Installation Grant, Centre National de la Recherche Scientifique, Ligue Contre le Cancer, Society for Reproduction and Fertility, Fondation pour la recherche médicale, Le ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation, and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
Spontaneous symmetry breaking ,[SDV]Life Sciences [q-bio] ,Cytoplasmic Streaming ,Mice ,Polar body ,0302 clinical medicine ,Animal Cells ,Chromosome Segregation ,Cell Cycle and Cell Division ,Biology (General) ,cdc42 GTP-Binding Protein ,Anaphase ,0303 health sciences ,Chromosome Biology ,General Neuroscience ,Cell Polarity ,Meiosis ,Cell Motility ,Cell Processes ,OVA ,Female ,Cellular Types ,General Agricultural and Biological Sciences ,Research Article ,Cell Physiology ,Imaging Techniques ,QH301-705.5 ,Spindle Apparatus ,Chromatids ,Biology ,Research and Analysis Methods ,Chromosomes ,General Biochemistry, Genetics and Molecular Biology ,Sister chromatid segregation ,03 medical and health sciences ,Fluorescence Imaging ,Animals ,Symmetry breaking ,Metaphase ,Cytokinesis ,030304 developmental biology ,General Immunology and Microbiology ,Biology and Life Sciences ,Cell Biology ,Actins ,Germ Cells ,Oocytes ,Biophysics ,rhoA GTP-Binding Protein ,030217 neurology & neurosurgery - Abstract
Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II–arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined., Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and two small polar bodies, but the mechanisms underlying the required symmetry breaking and spindle rotation have remained elusive. This study shows that spindle rotation in activated mouse oocytes relies on spontaneous symmetry breaking resulting from an unstable configuration generated by cleavage furrow ingression and cortical chromosome attraction.
- Published
- 2021
- Full Text
- View/download PDF