1. Using an unbiased symbolic movement representation to characterize Parkinson’s disease states
- Author
-
Bryan Ho, Kevin Thomas, Stephen Heisig, Vittorio Caggiano, Vesper Ramos, and Avner Abrami
- Subjects
Adult ,Male ,0301 basic medicine ,Parkinson's disease ,Computer science ,Movement ,Speech recognition ,lcsh:Medicine ,Article ,03 medical and health sciences ,0302 clinical medicine ,Motor control ,medicine ,Humans ,Representation (mathematics) ,lcsh:Science ,Aged ,Multidisciplinary ,Stationary distribution ,Markov chain ,Movement (music) ,lcsh:R ,Parkinson Disease ,Motor impairment ,Exercise therapy ,Middle Aged ,Wrist ,medicine.disease ,Exercise Therapy ,Stereotypy (non-human) ,030104 developmental biology ,Female ,lcsh:Q ,030217 neurology & neurosurgery - Abstract
Unconstrained human movement can be broken down into a series of stereotyped motifs or ‘syllables’ in an unsupervised fashion. Sequences of these syllables can be represented by symbols and characterized by a statistical grammar which varies with external situational context and internal neurological state. By first constructing a Markov chain from the transitions between these syllables then calculating the stationary distribution of this chain, we estimate the overall severity of Parkinson’s symptoms by capturing the increasingly disorganized transitions between syllables as motor impairment increases. Comparing stationary distributions of movement syllables has several advantages over traditional neurologist administered in-clinic assessments. This technique can be used on unconstrained at-home behavior as well as scripted in-clinic exercises, it avoids differences across human evaluators, and can be used continuously without requiring scripted tasks be performed. We demonstrate the effectiveness of this technique using movement data captured with commercially available wrist worn sensors in 35 participants with Parkinson’s disease in-clinic and 25 participants monitored at home.
- Published
- 2020
- Full Text
- View/download PDF