1. Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains
- Author
-
Gaglione, Rosa, Cesaro, Angela, Dell'Olmo, Eliana, Della Ventura, Bartolomeo, Casillo, Angela, Di Girolamo, Rocco, Velotta, Raffaele, Notomista, Eugenio, Veldhuizen, Edwin J A, Corsaro, Maria Michela, De Rosa, Claudio, Arciello, Angela, LS Moleculaire Afweer, dI&I I&I-3, LS Moleculaire Afweer, dI&I I&I-3, Gaglione, Rosa, Cesaro, Angela, Dell'Olmo, Eliana, DELLA VENTURA, Bartolomeo, Casillo, Angela, DI GIROLAMO, Rocco, Velotta, Raffaele, Notomista, Eugenio, Veldhuizen, Edwin J. A., Corsaro, MARIA MICHELA, DE ROSA, Claudio, and Arciello, Angela
- Subjects
Lipopolysaccharides ,0301 basic medicine ,Cell Membrane Permeability ,Apolipoprotein B ,medicine.drug_class ,antimicrobial peptides, antibiotic resistance, zeta potential measurements, electron microscopy ,Antibiotics ,lcsh:Medicine ,Peptide ,Microbial Sensitivity Tests ,Calorimetry ,Antimicrobial resistance ,Article ,03 medical and health sciences ,0302 clinical medicine ,Anti-Infective Agents ,Microscopy, Electron, Transmission ,Extracellular ,medicine ,Humans ,lcsh:Science ,chemistry.chemical_classification ,Multidisciplinary ,Innate immune system ,biology ,Chemistry ,lcsh:R ,Isothermal titration calorimetry ,Antimicrobial ,030104 developmental biology ,Membrane ,Biochemistry ,Apolipoprotein B-100 ,Pseudomonas aeruginosa ,biology.protein ,lcsh:Q ,Peptides ,030217 neurology & neurosurgery ,Antimicrobial Cationic Peptides - Abstract
Cationic Host Defense Peptides (HDPs) are endowed with a broad variety of activities, including direct antimicrobial properties and modulatory roles in the innate immune response. Even if it has been widely demonstrated that bacterial membrane represents the main target of peptide antimicrobial activity, the molecular mechanisms underlying membrane perturbation by HDPs have not been fully clarified yet. Recently, two cryptic HDPs have been identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, and with anti-biofilm, wound healing and immunomodulatory properties. Moreover, ApoB derived HDPs are able to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, by using a multidisciplinary approach, including time killing curves, Zeta potential measurements, membrane permeabilization assays, electron microscopy analyses, and isothermal titration calorimetry studies, the antimicrobial effects of ApoB cryptides have been analysed on bacterial strains either susceptible or resistant to peptide toxicity. Intriguingly, it emerged that even if electrostatic interactions between negatively charged bacterial membranes and positively charged HDPs play a key role in mediating peptide toxicity, they are strongly influenced by the composition of negatively charged bacterial surfaces and by defined extracellular microenvironments.
- Published
- 2019