1. Exome sequencing and characterization of 49,960 individuals in the UK Biobank
- Author
-
David J. Carey, Cristen J. Willer, Anthony Marcketta, Claudia Schurmann, Leland Barnard, John Penn, Suganthi Balasubramanian, Daren Liu, Joseph B. Leader, Gonçalo R. Abecasis, Marcus B. Jones, John C. Whittaker, Ashutosh K. Pandey, Ida Surakka, David H. Ledbetter, Evan Maxwell, John D. Overton, Andrew Blumenfeld, Michael N. Cantor, Robert A. Scott, Wendy K. Chung, Alexander H. Li, Alexander Lopez, Joshua D. Backman, Matthew R. Nelson, Jeffrey Staples, Giovanni Coppola, Jonathan Marchini, Xiaodong Bai, Kavita Praveen, Alan R. Shuldiner, Claudia Gonzaga-Jauregui, Aris N. Economides, Shareef Khalid, William J Salerno, Bin Ye, Cristopher V. Van Hout, Kristian Hveem, Jeffrey G. Reid, Colm O'Dushlaine, Joshua D. Hoffman, Laura M. Yerges-Armstrong, Nilanjana Banerjee, Sean O'Keeffe, Ioanna Tachmazidou, Lon R. Cardon, Alicia Hawes, Aris Baras, Ashish Yadav, George D. Yancopoulos, and Lukas Habegger
- Subjects
Male ,0301 basic medicine ,Genes, BRCA2 ,Genes, BRCA1 ,Hasso-Plattner-Institut für Digital Engineering GmbH ,Penetrance ,030204 cardiovascular system & hematology ,Ion Channels ,0302 clinical medicine ,Bone Density ,Loss of Function Mutation ,Neoplasms ,Databases, Genetic ,Genetics research ,Genotype ,Exome ,Exome sequencing ,Biological Specimen Banks ,education.field_of_study ,Multidisciplinary ,Genomics ,Middle Aged ,Biobank ,Pedigree ,Phenotype ,ras GTPase-Activating Proteins ,Female ,Kidney Diseases ,Population ,Collagen Type VI ,Computational biology ,Biology ,Article ,DNA sequencing ,Varicose Veins ,03 medical and health sciences ,Exome Sequencing ,Humans ,education ,Alleles ,Aged ,Demography ,Rare variants ,Peptide Fragments ,United Kingdom ,030104 developmental biology ,ddc:000 ,Next-generation sequencing - Abstract
The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community., Exome sequences from the first 49,960 participants in the UK Biobank highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
- Published
- 2020
- Full Text
- View/download PDF