1. Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata
- Author
-
Jiangfeng Shen, Shanjin Huang, Sulin Ren, Lichao Qian, Min Diao, Qiannan Wang, and Yule Liu
- Subjects
0106 biological sciences ,0301 basic medicine ,QH301-705.5 ,formin ,Science ,Mutant ,Plant Biology ,Plasmodesma ,macromolecular substances ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,size exclusion limit of PD ,Arabidopsis ,Arabidopsis thaliana ,Biology (General) ,Actin ,General Immunology and Microbiology ,biology ,Chemistry ,plasmodesmata ,intercellular trafficking ,cucumber mosaic virus ,General Neuroscience ,fungi ,General Medicine ,biology.organism_classification ,Cell biology ,Transmembrane domain ,030104 developmental biology ,A. thaliana ,Formins ,biology.protein ,Medicine ,actin ,Intracellular ,Research Article ,010606 plant biology & botany - Abstract
Here, we demonstrate that Arabidopsis thaliana Formin 2 (AtFH2) localizes to plasmodesmata (PD) through its transmembrane domain and is required for normal intercellular trafficking. Although loss-of-function atfh2 mutants have no overt developmental defect, PD’s permeability and sensitivity to virus infection are increased in atfh2 plants. Interestingly, AtFH2 functions in a partially redundant manner with its closest homolog AtFH1, which also contains a PD localization signal. Strikingly, targeting of Class I formins to PD was also confirmed in rice, suggesting that the involvement of Class I formins in regulating actin dynamics at PD may be evolutionarily conserved in plants. In vitro biochemical analysis showed that AtFH2 fails to nucleate actin assembly but caps and stabilizes actin filaments. We also demonstrate that the interaction between AtFH2 and actin filaments is crucial for its function in vivo. These data allow us to propose that AtFH2 regulates PD's permeability by anchoring actin filaments to PD., eLife digest Plant cells communicate with each other via narrow channels embedded across adjacent cell walls. These channels, called plasmodesmata, allow molecules to pass between cells, thereby enabling plants to grow normally and develop tissues and organs. But plasmodesmata also serve as passageways that viruses can exploit to infect more and more cells. Given these pros and cons, plants must regulate how permeable their plasmodesmata are so they can transport necessary materials cell-to-cell while still defending against the spread of infection. Each cell within plants, animals, and fungi, contains a protein skeleton that helps to stabilize it. A threadlike fiber called actin filament, one of the key components that makes up the cell’s skeleton, presumably extends out to the plasmodesmata, which lie across the cell’s external wall. Previous research has shown that actin helps regulate cell-to-cell traffic through the plasmodesmata and that drug treatments involving actin disturb normal traffic. But techniques to visualize actin at the plasmodesmata are lacking, and both how plants control their plasmodesmata and actin’s involvement remain unclear. Diao et al. used a confocal microscope, fluorescent tags, and staining procedures in experiments that analyzed how plasmodesmata and actin interact within a small flowering plant called thale cress. These experiments showed that a protein known to regulate actin, called Formin 2, positions itself at the plasmodesmata where it caps off actin threads and anchors them to the channels. Diao et al. also generated thale cress that cannot produce Formin 2. These mutant plants had more permeable plasmodesmata and were more susceptible to a virus. By stably tethering actin to the plasmodesmata, Formin 2 plays a key part in regulating the permeability of these cell-to-cell channels, with unstable actin threads resulting in more penetrable plasmodesmata. These findings provide further evidence that plants rely on actin to regulate plasmodesmata, and they establish that Formin 2 is involved. Further research will clarify how actin and Formin 2 work together to adjust the structure of plasmodesmata channels.
- Published
- 2018