1. FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability
- Author
-
Claude Saint-Ruf, Viviana Barra, Silvia Ravera, Philippe Fernandes, Viola Nähse, Enrico Cappelli, Valeria Naim, Benoit Miotto, Maha Said, Intégrité du génome et cancers (IGC), Institut Gustave Roussy (IGR)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Stabilité Génétique et Oncogenèse (UMR 8200), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Università degli studi di Palermo - University of Palermo, The Norwegian Radium Hospital [Oslo, Norway] (TNRH), University of Genoa (UNIGE), Istituto Giannina Gaslini, Genova, Immunologia Clinica e Sperimentale, École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Gustave Roussy (IGR)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Università degli studi di Genova = University of Genoa (UniGe), Miotto, Benoit, Fernandes P., Miotto B., Saint-Ruf C., Said M., Barra V., Nahse V., Ravera S., Cappelli E., and Naim V.
- Subjects
0301 basic medicine ,Genome instability ,musculoskeletal diseases ,Transcription, Genetic ,QH301-705.5 ,Regulator ,Medicine (miscellaneous) ,Mitochondrion ,Biology ,[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,General Biochemistry, Genetics and Molecular Biology ,Oxidative Phosphorylation ,Article ,03 medical and health sciences ,0302 clinical medicine ,Transcription (biology) ,Stress, Physiological ,hemic and lymphatic diseases ,Gene expression ,FANCD2 ,Humans ,Biology (General) ,Gene ,Ubiquitins ,Chromosomal fragile site ,Chromosome Fragile Sites ,Chromosome Fragility ,Fanconi Anemia Complementation Group D2 Protein ,DNA damage and repair ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,HCT116 Cells ,Cell biology ,Mitochondria ,Settore BIO/18 - Genetica ,030104 developmental biology ,Gene Expression Regulation ,030220 oncology & carcinogenesis ,Unfolded Protein Response ,General Agricultural and Biological Sciences ,DNA Damage - Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability., Fernandes et al. discover a connection between the mitochondrial stress response and genomic stability. They find that transcription of common fragile site (CFS) genes is induced by mitochondrial stress, whereas a regulator of CFS stability, FANCD2, acts to dampen the mitochondrial stress response and transcription-associated replication stress. These findings suggest a FANCD2-mediated coordination of nuclear and mitochondrial responses to stress.
- Published
- 2021
- Full Text
- View/download PDF