1. Predicting short and long-term mortality after acute ischemic stroke using EHR
- Author
-
Vida Abedi, Christoph J. Griessenauer, Durgesh Chaudhary, Ramin Zand, Jiang Li, Venkatesh Avula, Seyed Mostafa Razavi, Shima Shahjouei, Shreya Bavishi, and Ming Wang
- Subjects
medicine.medical_specialty ,Disease ,Article ,Brain Ischemia ,Machine Learning ,03 medical and health sciences ,0302 clinical medicine ,Diabetes mellitus ,medicine ,Humans ,030212 general & internal medicine ,Stroke ,Ischemic Stroke ,Past medical history ,business.industry ,Guideline ,medicine.disease ,ROC Curve ,Neurology ,Emergency medicine ,Ischemic stroke ,Neurology (clinical) ,business ,Body mass index ,030217 neurology & neurosurgery ,Dyslipidemia - Abstract
Objective Despite improvements in treatment, stroke remains a leading cause of mortality and long-term disability. In this study, we leveraged administrative data to build predictive models of short- and long-term post-stroke all-cause-mortality. Methods The study was conducted and reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guideline. We used patient-level data from electronic health records, three algorithms, and six prediction windows to develop models for post-stroke mortality. Results We included 7144 patients from which 5347 had survived their ischemic stroke after two years. The proportion of mortality was between 8%(605/7144) within 1-month, to 25%(1797/7144) for the 2-years window. The three most common comorbidities were hypertension, dyslipidemia, and diabetes. The best Area Under the ROC curve(AUROC) was reached with the Random Forest model at 0.82 for the 1-month prediction window. The negative predictive value (NPV) was highest for the shorter prediction windows – 0.91 for the 1-month – and the best positive predictive value (PPV) was reached for the 6-months prediction window at 0.92. Age, hemoglobin levels, and body mass index were the top associated factors. Laboratory variables had higher importance when compared to past medical history and comorbidities. Hypercoagulation state, smoking, and end-stage renal disease were more strongly associated with long-term mortality. Conclusion All the selected algorithms could be trained to predict the short and long-term mortality after stroke. The factors associated with mortality differed depending on the prediction window. Our classifier highlighted the importance of controlling risk factors, as indicated by laboratory measures.
- Published
- 2021
- Full Text
- View/download PDF