1. Identification of MaWRKY40 and MaDLO1 as Effective Marker Genes for Tracking the Salicylic Acid-Mediated Immune Response in Bananas
- Author
-
Bo-Han Hou, Iqra Ashraf, Hsin-Hung Yeh, Wei-Chiang Shen, Chyi-Chuann Chen, Ming-Chi Lee, Shu-Ming Tsao, An-Po Cheng, Wei-Yi Chou, Ho-Ming Chen, Yuh Tzean, Chih-Ping Chao, and Elena Gamboa Chen
- Subjects
0106 biological sciences ,0301 basic medicine ,Genetics ,food and beverages ,Plant Science ,Biology ,Plant disease resistance ,biology.organism_classification ,01 natural sciences ,Genome ,Marker gene ,Cucumber mosaic virus ,03 medical and health sciences ,030104 developmental biology ,Pisang Awak ,Fusarium oxysporum ,Downy mildew ,Agronomy and Crop Science ,Gene ,010606 plant biology & botany - Abstract
Bananas are among the world’s most important cash and staple crops but are threatened by various devastating pathogens. The phytohormone salicylic acid (SA) plays a key role in the regulation of plant immune response. Tracking the expression of SA-responsive marker genes under pathogen infection is important in pathogenesis elucidation. However, the common SA-responsive marker genes are not consistently induced in different banana cultivars or different organs. Here, we conducted transcriptome analysis for SA response of a banana cultivar, ‘Pei-Chiao’ (Cavendish, AAA genome), and identified three genes, MaWRKY40, MaWRKY70, and Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (MaDLO1) that are robustly induced upon SA treatment in both the leaves and roots. Consistent induction of these three genes by SA treatment was also detected in both the leaves and roots of bananas belonging to different genome types such as ‘Tai-Chiao No. 7’ (Cavendish, AAA genome), ‘Pisang Awak’ (ABB genome), and ‘Lady Finger’ (AA genome). Furthermore, the biotrophic pathogen cucumber mosaic virus elicited the expression of MaWRKY40 and MaDLO1 in infected leaves of susceptible cultivars. The hemibiotrophic fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) also consistently induced the expression of MaWRKY40 and MaDLO1 in the infected roots of the F. oxysporum f. sp. cubense TR4-resistant cultivar. These results indicate that MaWRKY40 and MaDLO1 can be used as reliable SA-responsive marker genes for the study of plant immunity in banana. Revealing SA-responsive marker genes provides a stepping stone for further studies in banana resistance to pathogens.
- Published
- 2021
- Full Text
- View/download PDF