1. Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree-ring structure
- Author
-
Eric Badel, Bruno Moulia, Meriem Fournier, Cyrille B. K. Rathgeber, Félix P. Hartmann, Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant (PIAF), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), SILVA (SILVA), AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and ANR-11-LABX-0002,ARBRE,Recherches Avancées sur l'Arbre et les Ecosytèmes Forestiers(2011)
- Subjects
0106 biological sciences ,0301 basic medicine ,Cell division ,Physiology ,hormone ,cambium ,Plant Science ,01 natural sciences ,cytokinin ,03 medical and health sciences ,chemistry.chemical_compound ,Xylem ,Auxin ,Tracheary element differentiation ,Dendrochronology ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Cambium ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,xylogenesis ,model ,Cell Enlargement ,fungi ,PIN ,food and beverages ,Cell Differentiation ,tree ring ,15. Life on land ,Wood ,TDIF ,Tracheophyta ,Crosstalk (biology) ,030104 developmental biology ,chemistry ,Auxin polar transport ,Cytokinin ,Biophysics ,Seasons ,010606 plant biology & botany - Abstract
In conifers, xylogenesis produces during a growing season a very characteristic tree-ring structure: large thin-walled earlywood cells followed by narrow thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterised by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesised that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling works have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here we investigated the hypothesis of a regulation by a crosstalk between auxin and a second biochemical signal, using dynamical modelling. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g., cytokinin, TDIF) drives cell division and auxin polar transport.HighlightA dynamical model proves that two interacting signals (auxin, plus a cytokinin or the TDIF peptide) can drive wood formation dynamics and tree-ring structure development in conifers.
- Published
- 2020
- Full Text
- View/download PDF