1. Atrogin1-induced loss of aquaporin 4 in myocytes leads to skeletal muscle atrophy
- Author
-
Yong-Soo Lee, Jong Pil Yoon, Ja-Yeon Kim, Seok Won Chung, Woo Jin Yeo, and Dong Won Suh
- Subjects
0301 basic medicine ,Adult ,Male ,Molecular biology ,Ubiquitin-Protein Ligases ,Muscle Fibers, Skeletal ,Cellular homeostasis ,Muscle Proteins ,lcsh:Medicine ,Pathogenesis ,Article ,Tripartite Motif Proteins ,03 medical and health sciences ,Mice ,0302 clinical medicine ,medicine ,Myocyte ,Animals ,Humans ,HMGB1 Protein ,Muscle, Skeletal ,lcsh:Science ,Aquaporin 4 ,Multidisciplinary ,Sarcolemma ,SKP Cullin F-Box Protein Ligases ,biology ,Chemistry ,Myogenesis ,Ubiquitin ,lcsh:R ,NF-kappa B ,Ubiquitination ,Skeletal muscle ,Muscle atrophy ,Cell biology ,Ubiquitin ligase ,Mice, Inbred C57BL ,Muscular Atrophy ,030104 developmental biology ,medicine.anatomical_structure ,biology.protein ,Female ,lcsh:Q ,sense organs ,medicine.symptom ,030217 neurology & neurosurgery ,Signal Transduction - Abstract
The water channel aquaporin 4 (AQP4) regulates the flux of water across the cell membrane, maintaining cellular homeostasis. Since AQP4 is enriched in the sarcolemma of skeletal muscle, a functional defect in AQP4 may cause skeletal muscle dysfunction. To investigate a novel mechanism underlying skeletal muscle atrophy, we examined AQP4 expression and its regulation in muscle using the rotator cuff tear (RCT) model. Human and mouse AQP4 expression was significantly decreased in atrophied muscle resulting from RCT. The size and the number of myotubes were reduced following AQP4 knockdown. Atrogin 1-mediated ubiquitination of AQP4 was verified with an ubiquitination assay after immunoprecipitation of AQP4 with an anti-AQP4 antibody. In this study, we identified high mobility group box 1 (HMGB1) as a potent upstream regulator of atrogin 1 expression. Atrogin 1 expression was increased by recombinant mouse HMGB1 protein, and the HMGB1-induced atrogin 1 expression was mediated via NF-κB signaling. Our study suggests that loss of AQP4 appears to be involved in myocyte shrinkage after RCT, and its degradation is mediated by atrogin 1-dependent ubiquitination. HMGB1, in its function as a signaling molecule upstream of the ubiquitin ligase atrogin 1, was found to be a novel regulator of muscle atrophy.
- Published
- 2020