1. Establishment and molecular characterization of decitabine‐resistant K562 cells
- Author
-
Xiao-wen Zhu, Qian Yuan, Jun Qian, Xiang-Mei Wen, Ji-chun Ma, Ting-Juan Zhang, Qin Chen, Jing-Dong Zhou, Runbi Ji, Zi-Jun Xu, Zhao-Qun Deng, and Jiang Lin
- Subjects
0301 basic medicine ,Decitabine ,chemical and pharmacologic phenomena ,resistance ,DEAD-box RNA Helicases ,03 medical and health sciences ,0302 clinical medicine ,Downregulation and upregulation ,hemic and lymphatic diseases ,medicine ,Humans ,Survival rate ,DDX43 ,H19 ,Chemistry ,Gene Expression Regulation, Leukemic ,Myeloid leukemia ,Cell Biology ,Original Articles ,Neoplasm Proteins ,MicroRNAs ,030104 developmental biology ,Hypomethylating agent ,Apoptosis ,Drug Resistance, Neoplasm ,030220 oncology & carcinogenesis ,Cancer research ,Molecular Medicine ,Ectopic expression ,Original Article ,RNA, Long Noncoding ,K562 ,K562 Cells ,medicine.drug ,K562 cells - Abstract
The clinical activity of decitabine (5‐aza‐2‐deoxycytidine, DAC), a hypomethylating agent, has been demonstrated in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients. However, secondary resistance to this agent often occurs during treatment and leads to treatment failure. It is important to clarify the mechanisms underlying the resistance for improving the efficacy. In this study, by gradually increasing concentration after a continuous induction of DAC, we established the DAC‐resistant K562 cell line (K562/DAC) from its parental cell line K562. The proliferation and survival rate of K562/DAC was significantly increased, whereas the apoptosis rate was remarkably decreased than that of K562 after DAC treatment. In K562/DAC, a total of 108 genes were upregulated and 118 genes were downregulated by RNA‐Seq. In addition, we also observed aberrant expression of DDX43/H19/miR‐186 axis (increased DDX43/H19 and decreased miR‐186) in K562/DAC cells. Ectopic expression of DDX43 in parental K562 cells rendered cells resistant to the DAC. Taken together, we successfully established DAC‐resistant K562 cell line which can serve as a good model for investigating DAC resistance mechanisms, and DDX43/H19/miR‐186 may be involved in DAC resistance in K562.
- Published
- 2019