Michel Ménétrier, Ambroise Quesne-Turin, Laurence Croguennec, Delphine Flahaut, Joachim Allouche, Germain Vallverdu, Isabelle Baraille, François Weill, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors thank the Conseil Général des Pyrénées Atlantiques and the French Research Network on the Electrochemical Energy Storage (RS2E) for funding the AQT’s PhD fellowship, and Philippe Dagault (ICMCB-Pessac) for his technical support. This project received also funding from Région Nouvelle Aquitaine and the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01). The theoretical calculations were performed using HPC resources from GENCI-CINES (Grant 2017 A0010806920) and the Mesocentre de Calcul Intensif Aquitain (MCIA)., ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
International audience; This paper investigates the role of the stacking fault (5%, 20% and 50%) and the morphology of Li2MnO3 lamellar materials, issued from coprecipitation method with three annealing temperatures, on the surface reactivity. The structure and the morphology have been characterized by XRD, SEM and TEM. We studied the surface reactivity of these materials by combining X-ray photoemission spectroscopy (XPS), gaseous adsorption and first-principle calculations. An evolution of the reactivity toward the SO2 acid gaseous probe has been observed for the three materials, from pure redox mechanism toward mixed acid-base/redox mechanisms, respectively for 5% and 50% of stacking faults. We demonstrated that the electronic structure of Li2MnO3 being not modified by stacking faulted. Thus, the surface reactivity of faulted Li2MnO3 is not linked to the SF rate but only governed by the accessible crystalline surfaces and the manganese environments at the surface atomic layer. The formation of (0 0 1)-Li surface according to the Li-overstoichiometry on the extreme surface and the random particles shape of the more faulted materials are responsible of the reactivity tuning.