1. Thermoelectric Cu–S-Based Materials Synthesized via a Scalable Mechanochemical Process
- Author
-
Karel Knížek, Viktor Puchý, Marcela Achimovičová, Kan Chen, Petr Levinský, Ruizhi Zhang, Matej Baláž, Jiří Hejtmánek, Peter Varga, Peter Baláž, Lenka Kubíčková, Michael J. Reece, Oleksandr Dobrozhan, Emmanuel Guilmeau, Institute of Geotechnics, Slovak Academy of Sciences (SAS), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Institute of Physics of the Czech Academy of Sciences (FZU / CAS), Czech Academy of Sciences [Prague] (CAS), Institute of Materials Research, Queen Mary University of London (QMUL), Sumy State University, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Slovak Academy of Science [Bratislava] (SAS), and TRATEC
- Subjects
energy materials ,Materials science ,General Chemical Engineering ,scalable solid state synthesis ,Spark plasma sintering ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,engineering.material ,Stannite ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,multinary copper sulfides ,Mechanochemistry ,Thermoelectric effect ,Environmental Chemistry ,Kesterite ,Nanocomposite ,Renewable Energy, Sustainability and the Environment ,Tetrahedrite ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Thermoelectric materials ,0104 chemical sciences ,Chemical engineering ,engineering ,mechanochemistry ,0210 nano-technology ,thermoelectrics - Abstract
International audience; In this work, Cu-based sulfides (chalcopyrite CuFeS2, mohite Cu2SnS3, tetrahedrite Cu12Sb4S13, mawsonite Cu6Fe2SnS8, and kesterite Cu2ZnSnS4) were synthesized by industrial milling in an eccentric vibratory mill to demonstrate the scalability of their synthesis. For a comparison, laboratory-scale milling in a planetary mill was performed. The properties of the obtained samples were characterized by X-ray diffraction and, in some cases, also by Mössbauer spectroscopy. For the densification of powders, the method of spark plasma sintering was applied to prepare suitable samples for thermoelectric (TE) characterization which created the core of this paper. A comparison of the figure-of-merit ZT, representative of the efficiency of thermoelectric performance, shows that the scaling process of mechanochemical synthesis leads to similar values as compared to using laboratory methods. This makes the cost-effective production of Cu-based sulfides as prospective energy materials for converting heat to electricity feasible. Several new concepts that have been developed involving combinations of natural and synthetic species (tetrahedrite) and nanocomposite formation (tetrahedrite/digenite, mawsonite/stannite) offer sustainable approaches in solid-state chemistry. Mechanochemical synthesis is selected as a simple, one-pot, and facile solid-state synthesis of thermoelectric materials with the capability to reduce, or even eliminate, solvents, toxic gases, and high temperatures with controllable enhanced yields. The synthesis is environmentally friendly and essentially waste-free. The obtained results illustrate the possibility of large-scale deployment of energy-related materials.
- Published
- 2021