1. Quantification of the Local Topological Variations of Stripped and Plated Lithium Metal by X-ray Tomography
- Author
-
Eric Maire, Didier Devaux, Joël Lachambre, Renaud Bouchet, Marc Deschamps, Lucile Magnier, Margaud Lecuyer, Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Matériaux Interfaces ELectrochimie (MIEL), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Materials science ,electrode crosstalking ,020209 energy ,electrode cross-talking ,lithium metal ,02 engineering and technology ,Electrolyte ,Stripping (fiber) ,Redox ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Ion ,Metal ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,lithium microstructure ,chemistry.chemical_classification ,current density map ,Polymer ,021001 nanoscience & nanotechnology ,chemistry ,Chemical physics ,visual_art ,Electrode ,visual_art.visual_art_medium ,polymer electrolyte ,Grain boundary ,0210 nano-technology ,X-ray tomography - Abstract
International audience; Lithium (Li) metal is the most promising negative electrode to be implemented in batteries for stationary and electric vehicle applications. For years, its use and subsequent industrialization were hampered because of the inhomogeneous Li + ion reduction upon recharge onto Li metal leading to dendrite growth. The use of solid polymer electrolyte is a solution to mitigate dendrite growth. Li reduction leads typically to dense Li deposits, but the Li stripping and plating process remain nonuniform with local current heterogeneities. A precise characterization of the behavior of these heterogeneities during cycling is then essential to move toward an optimized negative electrode. In this work, we have developed a characterization method based on X-ray tomography applied to model Li symmetric cells to quantify and spatially probe the Li stripping/plating processes. Ante-and postmortem cells are recut in smaller cells to allow a 1 μm voxel size resolution in a conventional laboratory scanner. The reconstructed cell volume is postprocessed to numerically reflatten the Li electrodes, allowing us a subsequent precise measurement of the electrode and electrolyte thicknesses and revealing local interface modifications. This in-depth analysis brings information about the location of heterogeneities and their impact on the electrode microstructure at both the electrode grains and grain boundaries. We show that the plating process (reduction) induces more pronounced heterogeneities compared to the stripping (oxidation) one. The existence of crosstalking between the electrodes is also highlighted. In addition, this simple methodology permits to finely retrieve and then surface map the local current density at both electrodes based on the local thickness change during the redox process.
- Published
- 2020
- Full Text
- View/download PDF