63 results on '"Stéphane Marais"'
Search Results
2. Structural and Barrier Properties of Compatibilized PE/PA6 Multinanolayer Films
- Author
-
Sylvie Tencé-Girault, Quentin Beuguel, Quentin Lozay, Nadège Follain, Cyrille Sollogoub, Laurent Lebrun, Guillaume Miquelard-Garnier, Stéphane Marais, Alain Guinault, Eric Dargent, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Groupe de physique des matériaux (GPM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), ANR-16-CE08-0035,IMMUNE,Matériaux Innovants par procédé d'extrusion multi-nanocouches(2016), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Polymères, biopolymères, membranes (PBM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Morphology (linguistics) ,Materials science ,barrier properties ,Filtration and Separation ,02 engineering and technology ,mechanical properties ,Sciences de l'ingénieur ,lcsh:Chemical technology ,010402 general chemistry ,01 natural sciences ,Article ,chemistry.chemical_compound ,[CHIM]Chemical Sciences ,Chemical Engineering (miscellaneous) ,General Materials Science ,lcsh:TP1-1185 ,lcsh:Chemical engineering ,Composite material ,ComputingMilieux_MISCELLANEOUS ,PE/PA6 multinanolayer films ,chemistry.chemical_classification ,Thin layers ,Process Chemistry and Technology ,lcsh:TP155-156 ,forced assembly coextrusion process ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,Polyethylene ,interphase ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,serial model of diffusion ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polyamide ,Interphase ,0210 nano-technology ,Layer (electronics) - Abstract
The barrier performance and structural lightening of organic materials are increasingly desired and constitute a major challenge for manufacturers, particularly for transport and packaging. A promising technique which tends to emerge in recent years is that of multinanolayer coextrusion. The advantage is that it can produce multilayers made of thousands of very thin layers, leading to new properties due to crystalline morphology changes induced by confinement. This paper is focusing on the study of multinanolayered films with alternated polyethylene (PE), compatibilizer (PEgMA) and polyamide 6 (PA6) layers and made by a forced assembly coextrusion process equipped with layer multiplying elements (LME). PE/PA6 multilayer films consisting of 5 to 2049 layers (respectively 0 to 9 LME) were successfully obtained with well-organized multilayered structure. The evolution of the morphology and the microstructure of these two semi-crystalline polymers, when the thickness of each polymer layer decreases from micro-scale to nano-scale, was correlated to the water and gas transport properties of the PE/PA multilayers. The expected improvement of barrier properties was limited due to the on-edge orientation of crystals in very thin PE and PA6 layers. Despite this change of crystalline morphology, a slight improvement of the gas barrier properties was shown by comparing experimental results with permeabilities predicted on the basis of a serial model developed by considering a PE/PA6 interphase. This interphase observed by TEM images and the on-edge crystal orientation in multilayers were evidenced from mechanical properties showing an increase of the stiffness and the strength.
- Published
- 2021
- Full Text
- View/download PDF
3. Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties
- Author
-
Nadège Follain, Jérémie Soulestin, Tiphaine Messin, Nicolas Delpouve, Alain Guinault, Stéphane Marais, Cyrille Sollogoub, Quentin Lozay, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Polymères, biopolymères, membranes (PBM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Groupe de physique des matériaux (GPM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Économie, des Finances et de l'Industrie [Paris, France]
- Subjects
Materials science ,General Chemical Engineering ,barrier properties ,02 engineering and technology ,coextrusion ,010402 general chemistry ,01 natural sciences ,Article ,lcsh:Chemistry ,Crystallinity ,montmorillonite fillers ,Monolayer ,[CHIM]Chemical Sciences ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Nanocomposite ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,Biodegradable polymer ,0104 chemical sciences ,Amorphous solid ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,lcsh:QD1-999 ,biodegradable polymers ,multilayer film ,0210 nano-technology ,Glass transition - Abstract
Biodegradable PLA/PBSA multinanolayer nanocomposites were obtained from semi-crystalline poly(butylene succinate-co-butylene adipate) (PBSA) nanolayers filled with nanoclays and confined against amorphous poly(lactic acid) (PLA) nanolayers in a continuous manner by applying an innovative coextrusion technology. The cloisite 30B (C30B) filler incorporation in nanolayers was considered to be an improvement of barrier properties of the multilayer films additional to the confinement effect resulting to forced assembly during the multilayer coextrusion process. 2049-layer films of ~300 µ, m thick were processed containing loaded PBSA nanolayers of ~200 nm, which presented certain homogeneity and were mostly continuous for the 80/20 wt% PLA/PBSA composition. The nanocomposite PBSA films (monolayer) were also processed for comparison. The presence of exfoliated and intercalated clay structure and some aggregates were observed within the PBSA nanolayers depending on the C30B content. A greater reduction of macromolecular chain segment mobility was measured due to combined effects of confinement effect and clays constraints. The absence of both polymer and clays interdiffusions was highlighted since the PLA glass transition was unchanged. Besides, a larger increase in local chain rigidification was evidenced through RAF values due to geometrical constraints initiated by close nanoclay contact without changing the crystallinity of PBSA. Tortuosity effects into the filled PBSA layers adding to confinement effects induced by PLA layers have caused a significant improvement of water barrier properties through a reduction of water permeability, water vapor solubility and water vapor diffusivity. The obtaining barrier properties were successfully correlated to microstructure, thermal properties and mobility of PBSA amorphous phase.
- Published
- 2020
- Full Text
- View/download PDF
4. Polyimide/Ionic Liquid Composite Membranes for Middle and High Temperature Fuel Cell Application: Water Sorption Behavior and Proton Conductivity
- Author
-
Sergiy Rogalsky, Jorge Arturo Soto Puente, Kateryna Fatyeyeva, Stanislav Makhno, Oksana Tarasyuk, and Stéphane Marais
- Subjects
Materials science ,Proton exchange membrane fuel cell ,Filtration and Separation ,02 engineering and technology ,Conductivity ,010402 general chemistry ,lcsh:Chemical technology ,01 natural sciences ,Article ,thermal stability ,chemistry.chemical_compound ,Chemical Engineering (miscellaneous) ,Thermal stability ,porous polyimide membrane ,lcsh:TP1-1185 ,lcsh:Chemical engineering ,Alkyl ,ionic liquid ,vapour sorption ,chemistry.chemical_classification ,Process Chemistry and Technology ,lcsh:TP155-156 ,Sorption ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Membrane ,Chemical engineering ,chemistry ,Ionic liquid ,conductivity ,0210 nano-technology ,Polyimide - Abstract
Four water insoluble room-temperature protic ionic liquids (PILs) based on the N-alkylimidazolium cation with the alkyl chain length from 1 to 4 and bis(trifluoromethylsulfonyl)imide anion were synthesized and their chemical structure was confirmed by the 1H NMR and 19F NMR analysis. PILs were revealed to be thermally stable up to 360 and 400 °, C. At the same time, the proton conductivity of PILs was found to be dependent mostly on the temperature and, to a less extent, on the type of the cation, i.e., the increase of the conductivity from ~3 ×, 10&minus, 4 S/cm at 25 °, C to 2 ×, 2 S/cm at 150 °, C was observed. The water vapour sorption capacity of PILs was evaluated as a function of relative humidity and the influence of the alkyl chain length on the phase behaviour in the PIL-water system was discussed. The composite polyimide/PILs membranes were prepared by the PIL immobilization in the porous polymer (Matrimid®, 5218) film. The composite membranes showed a high level of proton conductivity (~10&minus, 3 S/cm) at elevated temperatures (up to 160 °, C). The obtained results reveal that the elaborated composite polyimide/PIL membranes are promising candidates for the application as proton exchange membrane at middle and high temperatures.
- Published
- 2020
5. Physicochemical properties and pervaporation performance of dense membranes based on cellulose acetate propionate (CAP) and containing polymerizable ionic liquid (PIL)
- Author
-
Stéphane Marais, Edyta Rynkowska, Andrzej Wolan, Antoine Lancien, Krzysztof Dzieszkowski, Kateryna Fatyeyeva, Anthony Szymczyk, Joanna Kujawa, Wojciech Kujawski, Stanisław Koter, Nicolaus Copernicus University [Toruń], Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), DEC-2015/18/M/ST5/00635, NCN, Narodowe Centrum Nauki, Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Filtration and Separation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Cellulose acetate propionate ,chemistry.chemical_compound ,medicine ,[CHIM]Chemical Sciences ,Organic chemistry ,General Materials Science ,Physical and Theoretical Chemistry ,Plasticization ,Plasticizer ,Polymerizable ionic liquids ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Hildebrand solubility parameter ,Monomer ,Membrane ,Hydrophilic pervaporation ,chemistry ,Chemical engineering ,Ionic liquid ,Pervaporation ,Swelling ,medicine.symptom ,0210 nano-technology ,Hybrid material ,Hansen's solubility parameters - Abstract
International audience; The new type of efficient pervaporative separation hybrid materials based on cellulose acetate propionate (CAP) and doped with 1-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride polymerizable ionic liquid (PIL) monomers (12.3–44.4 wt%) were elaborated for dehydration of propan-2-ol. Broad material and physicochemical characterization of membranes was performed including assessment of physicochemical, equilibrium, transport, and separation properties. Incorporation of PIL results in the plasticization of CAP based membranes. Additionally, with increasing loading of PIL from 12.3 to 44.4 wt% values of thickness-normalized Pervaporation Separation Index (PSIN) increase 1.6–2.4 times comparing to unloaded membrane (pure CAP). The distance parameters calculated on the base of the Hansen's solubility parameters were additionally employed to interpret swelling and pervaporative properties of membranes as well as to discuss interactions between solvents and prepared membranes. Lower value of distance parameter between pristine CAP and ethanol corresponds to the highest molar swelling degree of CAP based membranes. Swelling of CAP-PIL membranes in contact with water, ethanol, and propan-2-ol increased with of the increasing PIL content due to the hydrophilic character of ionic liquid. The gathered data provided insight into the potential applicability of the novel hybrid separation materials for pervaporative separation of liquid-liquid mixtures. © 2017 Elsevier B.V.
- Published
- 2017
- Full Text
- View/download PDF
6. How the chemical structure of the plasma-deposited SiOx film modifies its stability and barrier properties: FTIR study
- Author
-
Thanh Hien Tran, Fabienne Poncin-Epaillard, Stéphane Marais, Dominique Debarnot, D.B. Au, Bassidi Diawara, J. Ortiz, Kateryna Fatyeyeva, Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
- Subjects
Materials science ,General Chemical Engineering ,PECVD ,02 engineering and technology ,Substrate (electronics) ,engineering.material ,010402 general chemistry ,01 natural sciences ,Coating ,X-ray photoelectron spectroscopy ,Materials Chemistry ,inorganic silicon ,[CHIM]Chemical Sciences ,Fourier transform infrared spectroscopy ,Thin film ,Polycarbonate ,ComputingMilieux_MISCELLANEOUS ,density ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,visual_art ,engineering ,visual_art.visual_art_medium ,permeation ,Wetting ,0210 nano-technology ,fluorinated silicon - Abstract
Organosilicon thin films issued from the gas mixture of oxygen and hexamethyledisiloxane (HMDSO), 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), or fluorotriethoxysilane (FTEOS) deposited on polycarbonate (PC) substrate were obtained thanks to a RF plasma source. The chemical structure of the two types of inorganic SiOx (HMDSO/O2, TMCTS/O2) and fluorinated SiOxCyFz (FTEOS/O2, FTEOS/O2/TMCTS) coatings have been investigated by FTIR and XPS spectroscopies, and wettability measurement. Network structure and density of SiOx and SiOxCyFz thin films were discussed as a function of the νSiOSi band shifting observed in their respective FTIR spectra. The influence of various plasma parameters (such as discharge power, precursor/O2 ratio and, duration) on the film properties was studied in order to optimize the growth of both inorganic and fluorinated thin films. The ageing of such layers either at ambient atmosphere or even at reduced pressure showed a chemical alteration of the thin films surface and bulk, which stabilized after 15 days of storage. Such phenomenon is explained by the hydrophobicity recovery that may induce the observed network alteration. Water and oxygen permeation and transport properties of treated PC films were correlated with the coating structure and composition; then TMCTS was identified as the most efficient precursor for enhancing water barrier property. Furthermore, the permeation properties of these deposits seem to be more controlled by the material density than by their chemistry.
- Published
- 2019
- Full Text
- View/download PDF
7. Evolution of mechanical and barrier properties of thermally aged polycarbonate films
- Author
-
Bassidi Diawara, José Ortiz, Corinne Chappey, Kateryna Fatyeyeva, Laurent Colasse, Stéphane Marais, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Filtration and Separation ,02 engineering and technology ,Thermal treatment ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Contact angle ,Ultimate tensile strength ,General Materials Science ,Physical and Theoretical Chemistry ,Composite material ,Polycarbonate ,ComputingMilieux_MISCELLANEOUS ,Relaxation (NMR) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Volume (thermodynamics) ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology ,Glass transition - Abstract
Polycarbonate (PC) films of two different grades (Macrolon® LED 2245 and Macrolon® AL 2447) were elaborated and thermally aged at 100, 120 and 140 °C during intermediate and long times of aging. The physical aging effect on the film properties was analyzed by infrared spectroscopy, water contact angle, thermal and tensile tests, and water and gas permeation and sorption measurements. The effect of thermal treatment on PC properties was revealed, especially for the film aged at 120 °C. Aging caused a continual increase of PC glass transition temperature and relaxation enthalpy, an increase in Young's modulus and yield strength values and a decrease in the elongation at break. These results were attributed to the reduction of the free volume because of the PC conformational changes. The film barrier properties using liquid water and gas (N2, O2 and CO2) molecules as probes were studied in order to highlight the free volume evolution. It was shown that physical aging caused a reduction of water and gas permeability. This fact was mainly explained by the decrease of the solubility coefficient with the aging time increase.
- Published
- 2019
- Full Text
- View/download PDF
8. Water molecular state in 1-hexylpyridinium hexafluorophosphate: Water mean cluster size as a function of water concentration
- Author
-
Dominique Langevin, Stéphane Marais, Kateryna Fatyeyeva, Corinne Chappey, Abdellatif Dahi, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Tetrafluoroborate ,Water activity ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Hexafluorophosphate ,Materials Chemistry ,Physical and Theoretical Chemistry ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Hydrogen bond ,Sorption ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,6. Clean water ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Ionic liquid ,Gravimetric analysis ,Physical chemistry ,Pyridinium ,0210 nano-technology - Abstract
The water sorption behavior of representative pyridinium-based ionic liquid (IL), 1-hexylpyridinium hexafluorophosphate ([C6Py][PF6]), was studied over the whole range of the water activity a using a continuous gravimetric method. The analysis of the water sorption isotherm using the combination of a two-mode sorption (i.e. Henry-clustering) allowed to better understand [C6Py][PF6]-water interactions. At low and intermediate activity (a ≤ 0.8), the water molecules revealed a very low affinity to [C6Py][PF6] and, consequently, the water uptake was rather low. On the contrary, at high water activity (a > 0.8), the water uptake increased exponentially and the water clustering easily occurred. The constant of the Henry-clustering equation as well as the water clustering mechanism in [C6Py][PF6] were discussed and compared to those of imidazolium-based ILs: 1-hexyl-3-methylimidazolium hexafluorophosphate [C6C1im][PF6] (water-immiscible IL) and 1-butyl-3-methylimidazolium tetrafluoroborate [C4C1im][BF4] (water-miscible IL). It is shown that the sorption of water molecules by pyridinium-based ILs is controlled not only by the anion's nature, but also by the cation's nature. Moreover, the Zimm-Lundberg theory was used to determine the water mean cluster size (MCS) in [C6Py][PF6], [C6C1im][PF6] and [C4C1im][BF4]. The MCS results confirmed the strong capacity of water molecules to be aggregated in [C6Py][PF6]. In order to have a deeper insight into the water molecular state, infrared spectroscopy measurements were carried out as a function of the relative humidity value and the obtained results were correlated with the results of water sorption isotherms. It is found that at high water activity (a > 0.8), sorbed water molecules are strongly linked with ILs by hydrogen bonds and, therefore, are easily aggregated.
- Published
- 2019
- Full Text
- View/download PDF
9. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity
- Author
-
Stéphane Marais, Ferhat Sellami, Nicolas Couvrat, Kateryna Fatyeyeva, Ounissa Kebiche-Senhadji, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de procédés membranaires et de technique de séparation et de récupération (LPMSTR), Université A. Mira de Bejaia, Targa Ouzemmour 06000, Bejaia, Algeria, Sciences et Méthodes Séparatives (SMS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), and Collaboration
- Subjects
Polymers and Plastics ,General Chemical Engineering ,02 engineering and technology ,Aliquat 336 ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Chloride ,Contact angle ,chemistry.chemical_compound ,Materials Chemistry ,medicine ,Environmental Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Chemistry ,General Chemistry ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Cellulose triacetate ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,Ionic liquid ,0210 nano-technology ,Selectivity ,Nuclear chemistry ,medicine.drug - Abstract
Cellulose triacetate (CTA) and poly(butylene adipate-co-terephthalate) (PBAT)-based polymer inclusion membranes (PIMs) containing ionic liquid (tricaprylmethylammonium chloride (Aliquat 336)) as the carrier extractant were obtained for the facilitated and selective transport of Cr(VI) ions. The composition of PIMs was optimized in terms of the CTA/PBAT ratio. The obtained membranes were investigated using different techniques in order to show the influence of the membrane composition and the ionic liquid presence on the PIM resulting properties. The infrared analysis confirmed the presence of the intermolecular interactions of the hydroxyl groups of CTA with the carboxyl groups of PBAT and of the negatively charged carboxyl groups of CTA with the positively charged ammonium groups of Aliquat 336. The water contact angle measurements highlighted that the Aliquat 336 and PBAT presence modified the membrane hydrophobic/hydrophilic character. Moreover, it was shown that PIM containing the equivalent content of CTA and PBAT (35/35 wt%/wt%) with 30 wt% of Aliquat 336 revealed the optimized composition and was used for the Cr(VI) ions transport measurements. It was found that this PIM transported >99% of Cr(VI) in only 6 h and accumulated 120 h).
- Published
- 2019
- Full Text
- View/download PDF
10. Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers
- Author
-
Kateryna Fatyeyeva, Malys Koun, Pascal Dubuis, Stéphane Marais, Aracelys Marcano, Marc Grimme, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Alten [Villeneuve d'Ascq], Alten, INOPROD, and Carmat SA
- Subjects
Materials science ,General Chemical Engineering ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Elastomer ,01 natural sciences ,0104 chemical sciences ,Permeability (earth sciences) ,[CHIM.POLY]Chemical Sciences/Polymers ,Composite material ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Segmented polyurethane - Abstract
Polyurethane (PU) elastomers represent an important class of segmented copolymers. Thanks to many available chemical compositions, a rather broad range of chemical, physical, and biocompatible properties of PU can be obtained. These polymers are often characterized by high tensile and tear strength, elongation, fatigue life, and wear resistance. However, their relatively high permeability towards gases and water as well as their biocompatibility still limits the PU’s practical application, especially for biomedical use, for example, in implants and medical devices. In this review, the barrier and permeability properties of segmented PUs related to their chemical structure and physical and chemical properties have been discussed, including the latest developments and different approaches to improve the PU barrier properties.
- Published
- 2019
- Full Text
- View/download PDF
11. Impact of water and thermal induced crystallizations in a PC/MXD6 multilayer film on barrier properties
- Author
-
Cyrille Sollogoub, Valerie Gaucher, Nicolas Delpouve, Nadège Follain, Guillaume Miquelard-Garnier, Tiphaine Messin, Corinne Chappey, Stéphane Marais, Alain Guinault, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Isolement, structure, transformations et synthèse de substances naturelles (ISTSSN), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Procédés et Ingénierie en Mécanique et Matériaux [Paris] (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Unité Matériaux et Transformations - UMR 8207 (UMET), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)
- Subjects
Materials science ,Polymers and Plastics ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,Adipamide ,Sciences de l'ingénieur ,010402 general chemistry ,01 natural sciences ,Oxygen ,law.invention ,Crystallinity ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,law ,Thermal ,Materials Chemistry ,Crystallization ,Composite material ,Polycarbonate ,Organic Chemistry ,021001 nanoscience & nanotechnology ,Nitrogen ,0104 chemical sciences ,chemistry ,13. Climate action ,visual_art ,visual_art.visual_art_medium ,Water of crystallization ,0210 nano-technology - Abstract
International audience; A multilayer film composed of alternating layers of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6) was elaborated by using an innovative multilayer coextrusion process. Quasi-continuous thin MXD6 layers (nanolayers) alternating with PC layers were successfully obtained. The PC/MXD6 multilayer film showed a confining effect of MXD6 exerted by PC layers leading to an improvement of barrier properties despite a low degree of crystallinity (X c < 10 wt%). In order to further improve the barrier performances, crystallization treatments induced by water and by heating were then applied on the multilayer film and allowed reaching around 30 wt% of crystallinity in MXD6 layers. To decouple crystallization and geometrical constraint effects on the barrier properties in the multilayer films, the two treatments were also applied on MXD6 films. Surprisingly, despite an increase of the degree of crystallinity from 6 to 26%, water crystallization did not permit to improve gas barrier performances of the MXD6 film nor into the PC/MXD6 multilayer film. On the other hand, thermal crystallization of MXD6 in the multilayer film seems to be a more efficient route to strongly decrease the gas and moisture permeability, up to 75% for nitrogen, 58% for oxygen, 84% for carbon dioxide and 43% for water.
- Published
- 2019
- Full Text
- View/download PDF
12. Dimethylketene-based aliphatic polyketones: Copolymers and star-shaped polymers potentially useful in food packaging
- Author
-
Fabrice Burel, Stéphane Marais, Hanbin Wang, Nadège Follain, Nicolas Desilles, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Materials science ,Polymers and Plastics ,Organic Chemistry ,Cationic polymerization ,General Physics and Astronomy ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Food packaging ,Oxygen permeability ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polyketone ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Degradation (geology) ,Fourier transform infrared spectroscopy ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
This paper aims to design new aliphatic polyketones based on dimethylketene, by cationic polymerization. Previous works showed that the polyketone type of polydimethylketene presents excellent oxygen barrier properties even in the presence of humidity, enabling this material to compete with the polymers currently used in the food packaging industry. However, PDMK has a degradation temperature close to its melting temperature which may make processability uneasy. PDMK structure is thus modified to broaden the gap between these two temperatures: for the first time, a dimethylketene/ethylketene random copolymer and a star-shaped polydimethylketene are targeted by cationic polymerization. The obtained polymers are studied by 1H and 13C NMR, FTIR, and capillary viscosimetry, the thermal properties are more particularly analyzed by TGA and DSC, and the oxygen permeability is measured.
- Published
- 2016
- Full Text
- View/download PDF
13. Effect of the polar–nonpolar liquid mixtures on pervaporative behavior of perfluorinated sulfonic membranes in lithium form
- Author
-
Edyta Rynkowska, Wojciech Kujawski, Joanna Kujawa, Anne-Marie Kelterer, Larisa Karpenko-Jereb, Kateryna Fatyeyeva, Stéphane Marais, Corinne Chappey, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Nicolaus Copernicus University, Faculty of Chemistry, Nicolaus Copernicus University [Toruń], and Graz University of Technology [Graz] (TU Graz)
- Subjects
Methyl acetate ,Analytical chemistry ,Solvation ,Filtration and Separation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Dissociation (chemistry) ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Membrane ,chemistry ,Nafion ,Organic chemistry ,General Materials Science ,Pervaporation ,Methanol ,Physical and Theoretical Chemistry ,Dimethyl carbonate ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Two ion-exchange membranes possessing perfluorinated backbone and sulfonic groups (i.e. Nafion ® 120 and IonClad™ R4010) with lithium(I) counter-ions were investigated. The interactions between solvents of different polarity and the ion-exchange membranes with various morphologies were taken into account in order to better understand solvation and dissociation phenomena of the ion-pairs. Pervaporation of polar (i.e. water, methanol)–nonpolar (i.e. methyl acetate, dimethyl carbonate) liquid mixtures was carried out. It was revealed that the increase of the polar component concentration above 2 wt% in the feed mixture leads to dissociation of ion-pairs in Nafion membrane, which is reflected by the rapid increase of the polar component partial flux. In the case of IonClad membrane the dissociation of the ion-pairs during pervaporation was observed only when water was a polar feed component. The dissociation of ion-pairs was also evidenced in infrared study by observing the shift of symmetric stretching vibrations (ν s ) bands of sulfonic groups to the lower wavenumbers, compared to the membrane in the dry state. The symmetric stretching vibrations (ν s ) bands of the dry Nafion membrane and membrane solvated with water and methanol were equal to 1071 cm −1 , 1058 cm −1 , and 1054 cm −1 , respectively. In the case of IonClad membrane the symmetric stretching vibration (ν s ) bands changed in contact with water from 1047 cm −1 (dry membrane) to 1037 cm −1 . The dissociation of the ion-pairs did not occur in IonClad membrane equilibrated with methanol, which is also consistent with the result obtained during pervaporation.
- Published
- 2016
- Full Text
- View/download PDF
14. Poly[(butylene succinate)-co-(butylene adipate)]-Montmorillonite Nanocomposites Prepared by Water-Assisted Extrusion: Role of the Dispersion Level and of the Structure-Microstructure on the Enhanced Barrier Properties
- Author
-
Jérémie Soulestin, Stéphane Marais, Nadège Follain, Eric Dargent, Sébastien Charlon, Michel Sclavons, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Institut Mines-Télécom [Paris] (IMT), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai), and Université Catholique de Louvain = Catholic University of Louvain (UCL)
- Subjects
Materials science ,Nanocomposite ,Composite number ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,01 natural sciences ,Exfoliation joint ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Polybutylene succinate ,chemistry.chemical_compound ,General Energy ,Montmorillonite ,chemistry ,Chemical engineering ,Adipate ,Polymer chemistry ,Extrusion ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Composite films composed of a biodegradable poly[(butylene succinate)-co-(butylene adipate)] (PBSA) matrix with several contents (2.5; 5; 7.5; 10 wt %) of native (MMT) or organo-modified montmorillonite (OMMT) were successfully extruded using an innovative water-assisted extrusion process. As expected, better dispersion and exfoliation levels of nanofillers were obtained in PBSA+OMMT than in PBSA+MMT composite films, whatever the nanofiller content. Otherwise, the water-assisted extrusion process has also clearly enhanced the dispersion and exfoliation levels of native montmorillonite. This process was particularly efficient to delaminate and to disperse high amounts (≥5 wt %) of MMT in the PBSA matrix, which has highly increased tortuosity effects in the resulting composite films. The films prepared via the water-assisted extrusion have consequently exhibited better barrier properties to water and to gases than the films classically extruded and as the nanofiller content increases.
- Published
- 2016
- Full Text
- View/download PDF
15. Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336
- Author
-
Ferhat Sellami, Laurent Colasse, Stéphane Marais, Ounissa Kebiche-Senhadji, Kateryna Fatyeyeva, Université Abderrahmane Mira [Béjaïa], Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Facilitated diffusion ,Metal ions in aqueous solution ,Inorganic chemistry ,Plasticizer ,Filtration and Separation ,02 engineering and technology ,Polymer ,Aliquat 336 ,021001 nanoscience & nanotechnology ,Acceptor ,Analytical Chemistry ,chemistry.chemical_compound ,Membrane ,020401 chemical engineering ,chemistry ,[CHIM]Chemical Sciences ,0204 chemical engineering ,0210 nano-technology ,Fluoride - Abstract
New polymer inclusion membranes (PIMs) based on poly(vinylidene fluoride) (PVDF) (polymer matrix), tricaprylmethylammonium chloride (Aliquat 336) (ion carrier) and 2-nitrophenyloctylether (2NPOE) (plasticizer) were successfully elaborated by casting evaporation method and used in selectively facilitated transport of Cr(VI) ions in an acidic aqueous medium. Obtained PIMs are dense and homogeneous and are characterized by intermolecular interactions of the membrane components (i.e. polymer matrix, ion carrier and plasticizer). The presence of ion carrier and plasticizer enhances the membrane flexibility and its hydrophilic character. The decrease of the PVDF melting point is ascribed to the strong electrostatic interactions between liquid compounds (i.e. ion carrier and plasticizer) and polymer chains. PVDF-based PIM with only 20 wt% of Aliquat 336 ensures almost complete transport of Cr(VI) ions from the donor to acceptor phase. Moreover, the addition of 5 wt% of plasticizer significantly increases the transport flux. Also, Cr(VI) ions are selectively recovered (~97%) from a mixture containing other heavy metal ions (Cd(II), Pb(II), Fe(III), Zn(II), Cu(II), Ni(II), Co(II)) with such PIM. Elaborated PVDF-based PIMs reveal improved transport properties compared to other polymer-based PIMs, exhibiting high stability (more than 190 h) and lifetime durability and so they are suitable for long term application.
- Published
- 2020
- Full Text
- View/download PDF
16. Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances
- Author
-
Nadège Follain, Nicolas Delpouve, Valerie Gaucher, Cyrille Sollogoub, Tiphaine Messin, Stéphane Marais, Alain Guinault, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Groupe de physique des matériaux (GPM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Procédés et Ingénierie en Mécanique et Matériaux [Paris] (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN)
- Subjects
Matériaux [Sciences de l'ingénieur] ,Materials science ,Diffusion ,Filtration and Separation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Crystallinity ,Coextrusion ,poly(butylene succinate) ,General Materials Science ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Barrier properties ,Thin layers ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,Multilayer film ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Polybutylene succinate ,Polyester ,Membrane ,chemistry ,Chemical engineering ,Barrier properties - Coextrusion - Multilayer film - poly(butylene succinate) - poly(lactic acid) ,Extrusion ,poly(lactic acid) ,0210 nano-technology - Abstract
International audience; Polyester multilayer membranes with more than 2000 alternating layers of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) were successfully prepared via a nanolayer coextrusion process equipped with a multiplying-element device. This process allows to make films consisting of very thin layers of polymers and in which a confinement effect of the semicrystalline polymer can be induced at point to significantly improve its physical properties. In this work, a homogeneous multinanolayer film of PLA/PBS was obtained without defaults or delamination, while the two polymers are immiscible. Continuous and homogeneous ultrathin layers of PBS (~45 nm) were obtained and the resulting confined structure of PBS led to an improvement of its barrier performances until 30% for oxygen, 40% for water and 70% for carbon dioxide. This improvement was explained by a decrease of the solubility coefficient and surprisingly not by the diffusion coefficient. This result was attributed to a slight orientation of the crystals in the extrusion direction and to the probable presence of an interphase between the layers of PLA and PBS.
- Published
- 2020
- Full Text
- View/download PDF
17. Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network
- Author
-
Julien Bras, Alain Dufresne, Sabrina Belbekhouche, Stéphane Marais, Corinne Chappey, Nadège Follain, Gilberto Siqueira, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie des procédés papetiers (LGP2 ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Gas permeation ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Nanocellulose ,Nanocomposites ,Percolating network ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,Crystallinity ,[SPI]Engineering Sciences [physics] ,Colloid and Surface Chemistry ,Phase (matter) ,[CHIM]Chemical Sciences ,Cellulose ,Nanocomposite ,Gas diffusion ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,Nanocrystal ,0210 nano-technology ,Caprolactone - Abstract
International audience; Herein, a three-dimensional percolating cellulose nanocrystal network has been successfully entangled into a poly(caprolactone) (PCL) film to prepare fully biodegradable bio-nanocomposites. To strongly assembly the reinforcing dense cellulose phase and PCL chains and limit the incompatibility effect, the cellulose surface was chemically modified using a long-chain isocyanate as grafting agent. Structural effects are highlighted through gas transport examination using several diffusing probes. A peculiar and unexpected behavior is evidenced: both permeability and diffusivity increased, whereas solubility is reduced, compared to the unfilled PCL film. One can suspect that the formation of the reinforcing cellulose network and its anchoring to PCL chains are the cause of structural defects facilitating the gas transfer localized in interfacial regions. The resulting structure of the film plays a main role on gas barrier performances compared to the change in crystallinity and tortuosity effect induced by rod-like nanoparticles.
- Published
- 2018
- Full Text
- View/download PDF
18. Vapour sorption and permeation behaviour of supported ionic liquid membranes: application for organic solvent/water separation
- Author
-
Kateryna Fatyeyeva, Sergiy Rogalsky, Oksana Tarasyuk, Corinne Chappey, Stéphane Marais, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institute of Bioorganic Chemistry and Petrochemistry, and National Academy of Sciences of Ukraine (NASU)
- Subjects
Polymers and Plastics ,Cyclohexane ,General Chemical Engineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,chemistry.chemical_compound ,Materials Chemistry ,Non-random two-liquid model ,Environmental Chemistry ,Thermal stability ,Alkyl ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Chemistry ,Sorption ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Ionic liquid ,0210 nano-technology - Abstract
The imidazolium-based ionic liquids (ILs) (1-n-alkyl-3-methylimidazolium tetrafluoroborate, where n = 4, 6–8, 12) were synthesized and characterized in terms of their spectral characteristics, thermal stability, and water, ethanol and cyclohexane vapour sorption behaviour. It was found that the highest hydrophilic character had IL with the shortest alkyl chain on the cation. At the same time, the IL thermal stability was decreased with the increase of the cation alkyl chain length. D'Arcy and Watt and NRTL sorption models allowed to well describe the vapour sorption experimental data. The supported ionic liquid membranes (SILMs) were prepared by impregnation of the porous poly(vinylidene fluoride) (PVDF) membrane with the synthesized ILs. The sorption capacity of PVDF was found to increase after its swelling in IL. An experimental evaluation of the SILMs permeability was carried out for water, ethanol and cyclohexane. The effect of operation parameters such as temperature and concentration of the permeant was studied. It was observed that the presence of the IL strongly influenced the permeability performance of the membrane by reducing the pore sizes and changing the hydrophobic/hydrophilic balance. It is found from the permeation kinetics curves that the SILMs have high potential for separation of organic solvent/water mixtures.
- Published
- 2018
- Full Text
- View/download PDF
19. Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion
- Author
-
Jérémie Soulestin, Nadège Follain, Sébastien Charlon, Eric Dargent, Michel Sclavons, Stéphane Marais, Corinne Chappey, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, and Université Catholique de Louvain = Catholic University of Louvain (UCL)
- Subjects
Materials science ,Plastics extrusion ,Filtration and Separation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Polymer chemistry ,General Materials Science ,Thermal stability ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Nanocomposite ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Exfoliation joint ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Membrane ,Chemical engineering ,chemistry ,Extrusion ,0210 nano-technology ,Dispersion (chemistry) - Abstract
Hybrid membranes made of a biopolymer matrix poly(butylene succinate) (PBS) or poly(butylene succinate-co-butylene adipate) (PBSA) loaded with 5 wt% of native (CNa) or organo-modified (C30B) montmorillonites were successfully extruded using new extrusion conditions where liquid water was introduced into the extruder barrel to improve the nanofiller dispersion and exfoliation levels. The C30B incorporation in both matrices leads to the degradation of polymer chains and the reduction of the thermal stability while the CNa introduction combined with the water injection presents no effect on the polymer molecular weight and the thermal stability. The water-assisted extrusion process enables the increase in CNa dispersion and exfoliation levels in both matrices, which improves barrier properties to gases and water by tortuosity effects. In the case of C30B, the positive effect of dispersion induced by water injection was much less pronounced since C30B particles were already well dispersed and exfoliated in both matrices. The use of the water injection at high pressure during the extrusion process was found really efficient for native montmorillonite and so appears as a promising process for dispersing hydrophilic particles in polymers having a low hydrophilic character, without preliminary chemical modification of the fillers.
- Published
- 2015
- Full Text
- View/download PDF
20. Designing Biodegradable PHA-Based 3D Scaffolds with Antibiofilm Properties for Wound Dressings: Optimization of the Microstructure/Nanostructure
- Author
-
Jean Marc Valleton, Naila Bou Haidar, Aracelys Marcano, Stéphane Marais, A.C. Duncan, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Nanostructure ,Biomedical Engineering ,02 engineering and technology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,010402 general chemistry ,01 natural sciences ,Biomaterials ,Polymer chemistry ,medicine ,Dispersin B ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Polyvinylpyrrolidone ,Substrate (chemistry) ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,Solvent ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,0210 nano-technology ,medicine.drug - Abstract
One major factor inhibiting natural wound-healing processes is infection through bacterial biofilms, particularly in the case of chronic wounds. In this study, the micro/nanostructure of a wound dressing was optimized in order to obtain a more efficient antibiofilm protein-release profile for biofilm inhibition and/or detachment. A 3D substrate was developed with asymmetric polyhydroxyalkanoate (PHA) membranes to entrap Dispersin B (DB), the antibiofilm protein. The membranes were prepared using wet-induced phase separation (WIPS). By modulating the concentration and the molecular weight of the porogen polymer, polyvinylpyrrolidone (PVP), asymmetric membranes with controlled porosity were obtained. PVP was added at 10, 30, and 50% w/w, relative to the total polymer concentration. The physical and kinetic properties of the quaternary nonsolvent/solvent/PHA/PVP systems were studied and correlated with the membrane structures obtained. The results show that at high molecular weight (Mw = 360 kDa) and high PV...
- Published
- 2017
- Full Text
- View/download PDF
21. Sulfonic Membrane Sorption and Permeation Properties: Complementary Approaches to Select a Membrane for Pervaporation
- Author
-
Wojciech Kujawski, Larisa Karpenko-Jereb, Anne-Marie Kelterer, Edyta Rynkowska, Stéphane Marais, Corinne Chappey, Kateryna Fatyeyeva, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Nicolaus Copernicus University, Faculty of Chemistry, Nicolaus Copernicus University [Toruń], and Graz University of Technology [Graz] (TU Graz)
- Subjects
Chemistry ,Inorganic chemistry ,Membrane structure ,Sorption ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Dissociation (chemistry) ,0104 chemical sciences ,Surfaces, Coatings and Films ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Membrane ,Materials Chemistry ,Semipermeable membrane ,Pervaporation ,Methanol ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
In this contribution, the physical and chemical properties of the dense sulfonic membrane IonClad R4010 in the lithium form were studied to evaluate its potential application in pervaporation. To develop new membrane materials, it is necessary to know the influence of the membrane structure on the membrane equilibrium and transport properties. For this purpose, the sorption and permeation measurements of water and methanol in the liquid and vapor states were performed and correlated to the ion pairs/solvent interactions analyzed by the infrared spectroscopy. The IonClad R4010 equilibrium and transport properties were found to be quite different depending on the permeant nature. The sorption and diffusion behavior of water and methanol was well described by means of the type II sorption model (BET theory). The swelling capacity of the IonClad R4010 membrane in methanol was found to be much lower than that in liquid water. In contrast to methanol, the total dissociation of the ion pairs in the IonClad R4010 membrane was obtained in the presence of water but only at high activity (∼0.8). Besides, the dispersion of the water molecules in the membrane was found to be homogeneous. The infrared spectroscopy results revealed that the methanol molecules had weaker interactions with the sulfonic groups of IonClad R4010 in agreement with the sorption data. The permeation properties were investigated by means of the sweeping gas and gravimetric methods in order to evaluate the membrane performance for pervaporation. The permeation results are in accordance with those obtained by sorption, thus confirming the complementariness of the two approaches.
- Published
- 2017
- Full Text
- View/download PDF
22. Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan
- Author
-
Meriem Elkolli, Nadège Follain, Stéphane Marais, Didier Le Cerf, Mahmoud Bounekhel, Asma Chetouani, Djafer Benachour, Christophe Rihouey, Université Ferhat-Abbas Sétif 1 [Sétif] (UFAS1), Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
food.ingredient ,Chemical Phenomena ,Biocompatibility ,Pectin ,Size-exclusion chromatography ,02 engineering and technology ,macromolecular substances ,010402 general chemistry ,Hemolysis ,01 natural sciences ,Biochemistry ,Chitosan ,Biomaterials ,chemistry.chemical_compound ,food ,Differential scanning calorimetry ,Structural Biology ,Oxidation ,Humans ,Organic chemistry ,Molecular Biology ,Schiff Bases ,Sodium periodate ,Periodate ,General Medicine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Haemolysis ,Anti-Bacterial Agents ,0104 chemical sciences ,Molecular Weight ,carbohydrates (lipids) ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Pectins ,Antibacterial activity ,Blood compatibility ,0210 nano-technology ,Oxidation-Reduction ,Nuclear chemistry - Abstract
International audience; Pectin has been widely used in a variety of biomedical applications. In this study, it was modified with sodium periodate as an oxidant and characterized by physicochemical methods Periodate oxidation increased the contents of dialdehyde units and carboxyl groups in pectin, and a decrease in pectin viscosity was measured. The oxidization reaction led to a significant decrease in all values of molecular weight and size (Mn, Mw, [η] and Rh) as determined by size exclusion chromatography (SEC), which allowed the selection of the oxidized pectin to be added to chitosan. Chitosan-based films were characterized by infra-red spectroscopy (FTIR), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) measurements. Thermal behaviour studies demonstrated that interactions existed between chitosan and oxidized pectin. The haemolysis percentages of films were found to be less than 5%, which indicated their good blood compatibility. Finally, the antibacterial activity was clearly improved. Cross-linking reactions between pectin and chitosan through ionic bonds and amide bonds and between chitosan and oxidized pectin through Schiff base formation were evidenced, which opens the way to extend applications of these polysaccharides; notably, the biocompatibility and biodegradability of these new networks is convenient for pharmaceutical, biomedical or cosmetic applications.
- Published
- 2017
- Full Text
- View/download PDF
23. Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties
- Author
-
Nadège Follain, Guillaume Miquelard-Garnier, Stéphane Marais, Alain Guinault, Cyrille Sollogoub, Valerie Gaucher, Nicolas Delpouve, Tiphaine Messin, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Procédés et Ingénierie en Mécanique et Matériaux [Paris] (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU), Unité Matériaux et Transformations - UMR 8207 (UMET), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
- Subjects
Confined structure ,Matériaux [Sciences de l'ingénieur] ,Chemical substance ,Filtration and Separation ,02 engineering and technology ,010402 general chemistry ,poly(m-xylene adipamide) ,01 natural sciences ,Biochemistry ,Permeability ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Crystallinity ,Multilayer ,General Materials Science ,Physical and Theoretical Chemistry ,Polycarbonate ,Barrier properties ,Mécanique [Sciences de l'ingénieur] ,Chemistry ,Permeation ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amorphous solid ,Polycarbonate, poly(m-xylene adipamide) ,Membrane ,Chemical engineering ,Permeability (electromagnetism) ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology ,Science, technology and society - Abstract
Films of PC and MXD6 were prepared via multilayer coextrusion. Films presenting stretched nodules/lamellas of MXD6 in the PC matrix, and films with quasi-continuous thin MXD6 layers alternating with PC layers were obtained. The transport properties were specifically investigated from water and gas permeation kinetics, and the corresponding permeation parameters were determined. The confinement effect of MXD6 in the multilayer structure was highlighted by comparing the permeability predicted from the series model equation with the experimental data. Although the MXD6 layers were not homogeneous and continuous for all membranes, water and gas permeabilities of the PC/MXD6 multilayer film were largely reduced. Such improvement of barrier properties was related to the change of the MXD6 structure, considering that the confinement of the MXD6 layers induced by PC layers allowed to bring chain orientation and to reduce the chain segment mobility in the MXD6 amorphous constrained zones. In addition, in the case of a PC/MXD6 multilayer structure well defined with continuous layers and relatively homogeneous thicknesses, the degree of crystallinity was slightly increased.
- Published
- 2017
- Full Text
- View/download PDF
24. Layered Poly(ethylene- co -vinyl acetate)/Poly(ethylene- co -vinyl alcohol) Membranes with Enhanced Water Separation Selectivity and Performance
- Author
-
Eric Dargent, Kateryna Fatyeyeva, Corinne Chappey, Stéphane Marais, J. A. Soto Puente, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
- Subjects
Vinyl alcohol ,Materials science ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Hydrolysis ,chemistry.chemical_compound ,Crystallinity ,Polymer chemistry ,otorhinolaryngologic diseases ,Vinyl acetate ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,sense organs ,0210 nano-technology ,Selectivity - Abstract
A three-layered membrane based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed EVA–poly(ethylene-co-vinyl alcohol) (EVOH), was elaborated by the surface hydrolysis of a dense EVA membrane. Because of the chemical modifications, the three-layered EVOH/EVA/EVOH membrane was characterized by the particular microstructure (amorphous EVA and semicrystalline EVOH) and the tunable hydrophilic/hydrophobic balance. Also, these modifications led to the membrane with the selective barrier properties compared with the pure EVA and completely hydrolyzed EVOH membranes. The water barrier behavior was related to the strong hydrogen-bond interactions of water and vinyl alcohol groups, whereas the weak chemical interactions were revealed for gases (N2 and O2). Furthermore, the influence of the polymer rubbery or glassy state on the permeation kinetics was established. In the case of the three-layered membrane, the considerably high selectivity values were obtained for H2O/O2 (∼11 900) and H2O/N2 (∼48 000) at 25 °C...
- Published
- 2017
- Full Text
- View/download PDF
25. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion
- Author
-
Nicolas Delpouve, Cyrille Sollogoub, Valerie Gaucher, Stéphane Marais, Alain Guinault, Nadège Follain, Tiphaine Messin, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Procédés et Ingénierie en Mécanique et Matériaux [Paris] (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Unité Matériaux et Transformations - UMR 8207 (UMET), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
- Subjects
Matériaux [Sciences de l'ingénieur] ,Materials science ,multilayer polymer film ,Diffusion ,barrier properties ,02 engineering and technology ,coextrusion ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Crystallinity ,General Materials Science ,poly(butylene succinate-co-butylene adipate) ,Composite material ,chemistry.chemical_classification ,Mécanique [Sciences de l'ingénieur] ,confined crystallization ,Polymer ,Permeation ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,Amorphous solid ,Polyester ,chemistry ,multilayer polymer film, coextrusion, confined crystallization, permeability, poly(lactic acid), poly(butylene succinate-co-butylene adipate), barrier properties ,poly(lactic acid) ,permeability ,0210 nano-technology ,Layer (electronics) - Abstract
International audience; Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
- Published
- 2017
- Full Text
- View/download PDF
26. Biopolymer/clay nanocomposites as the high barrier packaging material: recent advances
- Author
-
Kateryna Fatyeyeva, Corinne Chappey, and Stéphane Marais
- Subjects
Flexibility (engineering) ,Nanocomposite ,Materials science ,Moisture ,Food industry ,business.industry ,Active packaging ,Nanotechnology ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Durability ,0104 chemical sciences ,Food packaging ,engineering ,Biopolymer ,0210 nano-technology ,business - Abstract
Food nanotechnology is an area of new possibilities for the food industry, which is of great interest nowadays. The main trends of the nanotechnology application and functionality in developing food packaging include: the improvement of plastic material barriers, the introduction of the active components that can deliver additional functional attributes compared to the conventional active packaging, and the sensing and indication of relevant information. The main problem is extending the shelf life of packed products, preserving all organoleptic characteristics for as long as possible. Therefore, the high barrier materials (in particular it applies to oxygen, carbon dioxide, flavor compounds, and water vapor) are required to be used in the food packaging. Owing to the combination of the physical and morphological properties, the introduction of nanofillers into biopolymers is a promising strategy to overcome some critical issues, such as poor water resistivity and low mechanical properties. Thus, this chapter reviews different types of edible and biodegradable biobased nanocomposites with special emphasis on the advantages of nanotechnology application for improving the barrier properties of the polymer matrices. These properties include rigidity, stiffness or flexibility, durability, temperature and moisture stability, and the barrier properties against water, oxygen, and other gases.
- Published
- 2017
- Full Text
- View/download PDF
27. Water Transport Properties of Poly(butylene succinate) and Poly[(butylene succinate)- co -(butylene adipate)] Nanocomposite Films: Influence of the Water-Assisted Extrusion Process
- Author
-
Jérémie Soulestin, Sébastien Charlon, Stéphane Marais, Michel Sclavons, Nadège Follain, Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Université Catholique de Louvain = Catholic University of Louvain (UCL), and UCL - SST/IMCN/BSMA - Bio and soft matter
- Subjects
Water transport ,Nanocomposite ,Materials science ,Sorption ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Exfoliation joint ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Polybutylene succinate ,Crystallinity ,General Energy ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Adipate ,Polymer chemistry ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Poly(butylene succinate) (PBS) and poly-[(butylene succinate)-co-(butylene adipate)] (PBSA)-based composite films loaded with 5 wt % of fillers (native or organomodified montmorillonites) were extruded using a standard protocol or assisted by water injection. In the resulting composite films, the filler morphology was altered, as evidenced by TEM images. The CNa aggregates were broken with the help of water injection, and the exfoliation/dispersion levels of C30B were dependent on the matrix. By considering the degree of crystallinity of the polymer matrix, the nature of the fillers, and also the processing conditions, the film (micro)structure was successfully correlated to the water (liquid and vapor) behavior of the PBSand PBSA-based films, studied by means of sorption and permeation measurements. The water permeability and diffusivity were significantly reduced even with an increased water sorption, depending on the matrix and the clay morphology or nature. Specifically, concomitant effects such as tortuosity and trapping but also preferential diffusion pathways as well as free volumes in matrix strikingly were responsible for the barrier performances evolution.
- Published
- 2016
- Full Text
- View/download PDF
28. Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions
- Author
-
Laurent Colasse, Pascal Médéric, Nadège Follain, Stéphane Marais, B. Alexandre, Corinne Chappey, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), and SOS Mal de Seine
- Subjects
Materials science ,Water activity ,02 engineering and technology ,010402 general chemistry ,Thermal diffusivity ,01 natural sciences ,Tortuosity ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,medicine ,[CHIM]Chemical Sciences ,Composite material ,ComputingMilieux_MISCELLANEOUS ,Aqueous solution ,Nanocomposite ,General Engineering ,Sorption ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Water retention ,Montmorillonite ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Ceramics and Composites ,medicine.symptom ,0210 nano-technology - Abstract
Hybrid films, composed of a PA12 polyamide matrix filled with 5 wt% of clays were melt processed under different mixing conditions to classically obtain montmorillonite-filled microcomposites and organo-modified montmorillonite-filled nanocomposites. The change in mixing shear rates allowed to notably modulating the fragmentation level for montmorillonite and the exfoliation level for modified montmorillonite. Barrier properties to nitrogen and water were altered with a reduction in PA12 chain mobility by confinement effect and geometrical constraints. Tortuosity effects induced by fillers were also highlighted. The water permeability and diffusivity were significantly decreased with exfoliated clays, while an increase was measured with an increased water solubility in presence of clay aggregates, both counterbalanced tortuosity effects. This trend was amplified when using low shear rates. According to filler used and mixing conditions, water sorption measurement has successfully demonstrated an increase in water solubility, due to filler affinity, which was surprisingly inconsistent with the change of water permeability. The occurrence of water plasticization phenomenon was also pointed out through the non-constant diffusivity, reflecting an increased free volume with water activity. Again, a decrease in water diffusivity was unexpectedly obtained, explained by tortuosity effects and ascribed to local water retention at the vicinity of clays, which creates water aggregates in films. These findings were also confirmed by a mathematical modeling approach of sorption process, discussing about the sorbed water access.
- Published
- 2016
- Full Text
- View/download PDF
29. Influence of Crystallinity on the Dielectric Relaxations of Poly(Butylene Succinate) and Poly[(Butylene Succinate)- Co -(Butylene Adipate)]
- Author
-
Nadège Follain, Stéphane Marais, Laurent Delbreilh, Eric Dargent, Sébastien Charlon, Jérémie Soulestin, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Institut Mines-Télécom [Paris] (IMT), and Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai)
- Subjects
Materials science ,Polymers and Plastics ,General Physics and Astronomy ,02 engineering and technology ,Dielectric ,010402 general chemistry ,01 natural sciences ,Crystallinity ,Differential scanning calorimetry ,Adipate ,Polymer chemistry ,Materials Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Organic Chemistry ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,Amorphous solid ,Polybutylene succinate ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,0210 nano-technology - Abstract
Amorphous and semi-crystalline poly(butylene succinate) (PBS) and poly[(butylene succinate)-co-(butylene adipate)] (PBSA) are studied with Differential Scanning Calorimetry and Broadband Dielectric Spectroscopy (BDS). It was shown that 21 mol% of butylene adipate group decreases drastically the degree of crystallinity and the size of the crystal lamellae of the PBSA. For the two semi-crystalline polymers, the microstructure is well described by a three-phase model including a small degree of rigid amorphous fraction. Fragility indexes of the main dielectric relaxation are identical for each sample which shows similar segmental dynamics of their amorphous phase. BDS allows detecting complex secondary relaxations in semi-crystalline PBS and PBSA. Local motions are impacted by the microstructure and a new relaxation occurs in more constrained amorphous environments. Correlations between molecular mobility and barrier properties are proposed.
- Published
- 2016
- Full Text
- View/download PDF
30. Water sorption behaviour of two series of PHA/montmorillonite films and determination of the mean water cluster size
- Author
-
Laurent Lebrun, Stéphane Marais, Nadège Follain, Raphaël Crétois, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,Thermal diffusivity ,01 natural sciences ,chemistry.chemical_compound ,Polymer chemistry ,[CHIM]Chemical Sciences ,Water cluster ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Aqueous solution ,Nanocomposite ,Sorption ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Montmorillonite ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,0210 nano-technology ,Water vapor - Abstract
International audience; Biodegradable polyester-based films constituted of poly(hydroxyalkanoates) (PHA) were successfully extruded with various Cloisite 30B contents. The morphology was highly dependent on the matrix, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), the polymer crystalline phase fraction, the matrix/nanoclay interfacial regions as well as the nanoclay content. Water vapour resistance was investigated through sorption kinetics, isotherms, modelling aspect, and diffusivity. A typical sigmoid-shaped isotherm was obtained in every case. It emerges that the nanoclay highly contributed to the increase of water solubility of matrices. The dependence of polymer crystallinity on the affinity of the nanocomposite films for water was highlighted. Thermodynamic and kinetic contributions of the sorption process were also correlated with the film morphology. According to the matrix used, water diffusivity in films was differently impacted by the sorbed water amount. The access of sorbed water molecules within films was examined through a mathematical modelling approach and the deduced mean cluster size of water vs. its activity was corroborated by sorption kinetics.
- Published
- 2016
- Full Text
- View/download PDF
31. Ab initio study of cationic polymeric membranes in water and methanol
- Author
-
Kateryna Fatyeyeva, Sarah Lunghammer, Stéphane Marais, Larisa Karpenko-Jereb, Corinne Chappey, Anne-Marie Kelterer, Edyta Rynkowska, Wojciech Kujawski, Joanna Kujawa, Graz University of Technology [Graz] (TU Graz), Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Nicolaus Copernicus University, Faculty of Chemistry, and Nicolaus Copernicus University [Toruń]
- Subjects
General Chemical Engineering ,Inorganic chemistry ,Ab initio ,General Physics and Astronomy ,02 engineering and technology ,Physics and Astronomy(all) ,010402 general chemistry ,01 natural sciences ,Dissociation (chemistry) ,chemistry.chemical_compound ,Materials Science(all) ,Nafion ,Polymer chemistry ,Side chain ,General Materials Science ,Engineering(all) ,ComputingMilieux_MISCELLANEOUS ,Chemistry ,General Engineering ,Cationic polymerization ,Solvation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,Ionic strength ,Chemical Engineering(all) ,0210 nano-technology - Abstract
The work is devoted to a computational study of three types of cationic polymeric membranes in Li+-ionic form, in water and methanol environments, at various solvation levels. The studied membranes Nafion, IonClad, and M3 possess the perfluorinated backbone; however, various side chains were terminated with the functional groups of distinctly different ionic strength. The paper discusses the structural features of the membrane-solvent clusters as well as an influence of the side chain nature on the dissociation of the functional groups and the binding energy of the solvent molecules. Additionally, the paper compares the obtained results for Li+-Nafion membrane in water with the results published earlier for H+ and Na+ forms.
- Published
- 2016
- Full Text
- View/download PDF
32. Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films
- Author
-
Stéphane Marais, Julien Bras, Alain Dufresne, Gilberto Siqueira, Bertine Khelifi, Sabrina Belbekhouche, Laurent Lebrun, Corinne Chappey, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie des procédés papetiers (LGP2 ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Whiskers ,Organic Chemistry ,Nanoparticle ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Membrane ,chemistry ,Whisker ,Materials Chemistry ,Gaseous diffusion ,Semipermeable membrane ,Cellulose ,Composite material ,0210 nano-technology ,Porosity ,ComputingMilieux_MISCELLANEOUS - Abstract
Rod-like straight cellulose whiskers and long flexible entangled microfibrillated cellulose (MFC), both extracted from sisal fibers, were used to prepare cellulosic membranes. In view of the promising barrier properties recently reported separately in the literature for these naturally occurring particles it was of interest to investigate the influence of the nature of the nanoparticles (whiskers vs. MFC) on the transport properties of the films. The water vapor and gas (carbon dioxide, nitrogen and oxygen) permeability of films composed of either cellulose nanocrystals or MFC has been reported. It was observed that the diffusion of water is rather controlled by the surface than by the core, probably because of a barrier effect related to the presence of water at the surface during the sorption kinetics. The cellulose whiskers film was found to be much more permeable to gases than MFC. This difference was ascribed to the higher porosity of the former and to the possibility of entanglements of MFC and different surface chemistry.
- Published
- 2011
- Full Text
- View/download PDF
33. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties
- Author
-
Laurent Lebrun, Nadège Follain, A. Bessadok, S. Roudesli, Stéphane Marais, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Polymères, Biopolymères, Matériaux Organiques [Monastir] (LPBMO), and Université de Monastir - University of Monastir (UM)
- Subjects
Materials science ,Composite number ,Maleic anhydride ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Styrene ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,Acetic anhydride ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Mechanics of Materials ,Permeability (electromagnetism) ,Ceramics and Composites ,[CHIM]Chemical Sciences ,Composite material ,0210 nano-technology ,Reinforcement ,ComputingMilieux_MISCELLANEOUS ,Acrylic acid - Abstract
In this study, composite materials were prepared using unsaturated polyester resins reinforced by Alfa fibres. The fibres were previously modified by chemical treatments, maleic anhydride (MA), styrene (S), acrylic acid (AA) and acetic anhydride (Ac). The Ac and the S treatments allowed an increase in the moisture resistance and the mechanical properties of the fibres. The preliminary S or MA treatment of the fibres allowed a decrease of the water permeability of the composite. A slight increase of the stiffness of the composite was observed due to the presence of the fibres (treated or not), whereas the resistance (breaking strength and strain) was not improved. The mechanical behaviour of the composites appeared similar whatever the treatment of the fibres except with S treatment which seemed to improve the breaking strength.
- Published
- 2009
- Full Text
- View/download PDF
34. Hydrophobic surface treatments of sunflower pith using eco-friendly processes
- Author
-
Nirina Randrianandrasana, Nathalie Leblanc, Laurence Lecamp, Nadège Follain, Redouan Saiah, Stéphane Marais, Kateryna Fatyeyeva, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Unité de recherche en agro-écologie des territoires (AGRI'TERR ), and École supérieure d'ingénieurs et de techniciens pour l'agriculture (ESITPA)
- Subjects
Materials science ,Polymers and Plastics ,Plasma treatment ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,[CHIM]Chemical Sciences ,Composite material ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,Water resistance ,Chemical modification ,021001 nanoscience & nanotechnology ,Pulp and paper industry ,Sunflower ,Environmentally friendly ,6. Clean water ,0104 chemical sciences ,Epoxidized soybean oil ,Vegetable oil ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Pith ,0210 nano-technology ,circulatory and respiratory physiology - Abstract
The aim of the present paper is to report the reduction of the water uptake of sunflower pith, sustainable raw by-product without current added-value in oilseed crops production. The water-sensitivity is ascribed to its structure, because mainly constituted of carbohydrates, due to the formation of additional hydrogen bondings with water molecules. Two environmentally-friendly approaches were applied to provide a modified layer presenting water resistance in surface of sunflower pith in order to keep its low-density property. The first approach based on vegetable oil corresponds to thermal and photochemical treatments. A thin layer of virgin or acrylated epoxidized soybean oil was sprayed on the pith surface, and thereafter was thermally cured or photocured, respectively. The second approach consisted in a solventless chemical modification of the pith surface by a cold plasma treatment. Both approaches were successfully performed: water resistance of sunflower pith was clearly enhanced, especially with oil-based treatments; while maintaining its integrity. Developing new and promising ecological water-resistant products of low density from sunflower pith is thought of increasing interest with potential practical applications.
- Published
- 2015
- Full Text
- View/download PDF
35. Water sorption properties of room-temperature ionic liquids over the whole range of water activity and molecular states of water in these media
- Author
-
Sergiy Rogalsky, Oksana Tarasyuk, Stéphane Marais, Dominique Langevin, Corinne Chappey, Abdellatif Dahi, Kateryna Fatyeyeva, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institute of Bioorganic Chemistry and Petrochemistry, and National Academy of Sciences of Ukraine (NASU)
- Subjects
Water activity ,Hydrogen bond ,Chemistry ,General Chemical Engineering ,Inorganic chemistry ,Sorption ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,6. Clean water ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Ionic liquid ,Non-random two-liquid model ,Gravimetric analysis ,Molecule ,0210 nano-technology ,Water content ,ComputingMilieux_MISCELLANEOUS - Abstract
The water sorption behavior for various RTILs ([C4C1im][BF4], [C4C1im][PF6], [C6C1im][PF6], [C4im][DBP], [C4im][BEHP] and [Et3HN][CF3SO3]) was studied over the whole range of water activity using a continuous gravimetric method. Analysis of the water sorption isotherms using the non-random two-liquid model (NRTL) and the combination of a dual-mode sorption (Henry-clustering) allowed a better understanding of the RTIL-water interactions. It is noticed that the sorption of water by RTILs is mainly controlled by the anion's nature. Anions interact with water molecules by hydrogen bonds that promotes the formation of a hydrogen bond network between the water molecules. The water uptake by RTILs increases in the following order (up to 0.8 in the water activity a): [C6C1im][PF6] ≤ [C4C1im][PF6] 0.8), water molecules are aggregated only in water-miscible RTILs (case of [C4im][DBP] and [Et3HN][CF3SO3]) because of their stronger anion basicity. To complete the sorption study, the molecular state of water dissolved in RTILs was studied by the infrared spectroscopy. The water molecules dissolved in water-immiscible RTIL such as [C4C1im][PF6] are not self-associated independently of the water content and, thus, can be defined as “free” water molecules interacting via H-bonding with the anions in the symmetric complex: anion⋯HOH⋯anion. On the contrary, the water molecules sorbed in water-miscible RTILs such as [C4im][DBP] or [Et3HN][CF3SO3] are strongly associated by H-bonds and also with the anions even at low water activity, and are easily aggregated when the water content reaches the critical concentration at high activity.
- Published
- 2015
- Full Text
- View/download PDF
36. Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction
- Author
-
Jérémie Soulestin, Sébastien Charlon, Stéphane Marais, Nadège Follain, M. Sclavons, Eric Dargent, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, and Université Catholique de Louvain = Catholic University of Louvain (UCL)
- Subjects
Materials science ,Polymers ,Adipates ,General Physics and Astronomy ,02 engineering and technology ,Alkenes ,010402 general chemistry ,01 natural sciences ,Nanocomposites ,chemistry.chemical_compound ,Microscopy, Electron, Transmission ,Adipate ,Polymer chemistry ,Butylene Glycols ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Nanocomposite ,Calorimetry, Differential Scanning ,Molecular Structure ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amorphous solid ,Polybutylene succinate ,Polyester ,Montmorillonite ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Chromatography, Gel ,0210 nano-technology ,Glass transition - Abstract
Composites composed of polyesters, poly(butylene succinate) (PBS) or poly[(butylene succinate)-co-(butylene adipate)] (PBSA), and 5 wt% of montmorillonite (CNa) or organo-modified montmorillonite (C30B) were melt-processed and transformed into films by either compression-molding or extrusion-calendering. XRD, rheological measurements and TEM images clearly indicated that films containing CNa are microcomposites, while nanocomposites were observed for those containing C30B. Using Flash DSC, it was possible, for the first time, not only to measure the heat capacity step at the glass transition of these two materials in their amorphous state, but also to investigate whether the preparation technique influenced the Rigid Amorphous Fraction (RAF) in our PBS- and PBSA-based nanocomposites. In this work, we have successfully shown the correlation between the microstructure of the films and their barrier properties, and especially the role played by the RAF. Indeed, the lowest permeabilities to gases and to water were determined in the films containing the highest RAF in both PBS- and PBSA-based materials.
- Published
- 2015
- Full Text
- View/download PDF
37. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based nanocomposites : Influence of the microstructure on the barrier properties
- Author
-
Jérémie Soulestin, Stéphane Marais, Laurent Lebrun, R. Crétois, Eric Dargent, Serge Bourbigot, Nadège Follain, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université Le Havre Normandie (ULH), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT), Ingénierie des Systèmes Polymères, Unité Matériaux et Transformations - UMR 8207 (UMET), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille, Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Économie, des Finances et de l'Industrie [Paris, France], and Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Nitrogen ,Polyesters ,Hydroxybutyrates ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Nanocomposites ,chemistry.chemical_compound ,Differential scanning calorimetry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Solubility ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Nanocomposite ,Molecular Structure ,Water ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Carbon Dioxide ,Permeation ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,Oxygen ,Kinetics ,Montmorillonite ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Transmission electron microscopy ,Permeability (electromagnetism) ,Clay ,Thermodynamics ,Aluminum Silicates ,0210 nano-technology - Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB-co-4HB) films containing various contents of organo-modified montmorillonite C30B nanoclays were prepared by melt intercalation. Wide angle X-ray diffraction measurements and transmission electron microscopy observations evidenced aggregated and intercalated structures with individual nanoclay platelets in the nanocomposites and an orientation of nanoclays. Differential scanning calorimetry measurements showed that the nanoclay did not influence the crystalline structure of the matrix because it is mainly located in the polymer amorphous phase. The influence of the filler on the barrier properties of the film was evaluated by water diffusion, gas permeation (CO2, N2, O2) and liquid water sorption measurements. A decrease of the N2 permeability was measured due to the tortuosity effect of the filler associated with a decrease of the solubility within the matrix. The influence of the filler was more marked for O2 due to the larger decrease of O2 solubility. In contrast, the CO2 permeability increased whatever the filler content because of a facilitated transport mechanism due induced by the presence of quaternary ammonium cations on the C30B surface. The decrease of the water permeability with the filler was explained by a competition between the kinetic (diffusivity) and thermodynamic (solubility) contributions defining the permeability process.
- Published
- 2015
- Full Text
- View/download PDF
38. Tunable water barrier properties of EVA by clay insertion?
- Author
-
Anil Kumar S, Stéphane Marais, Nadège Follain, Runcy Wilson, Sabu Thomas, Nadine Tenn, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Water mass ,Materials science ,Water transport ,Diffusion ,General Physics and Astronomy ,Sorption ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Dispersion (geology) ,Thermal diffusivity ,01 natural sciences ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Polymer chemistry ,Pervaporation ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Organo-modified Cloisite clays at varying contents were incorporated into poly(ethylene-co-vinyl acetate) (EVA) by melt blending. Nanoclay dispersion in films was first evaluated. The water transport properties were investigated by pervaporation and sorption measurements. A decrease of the water permeation flux was obtained when incorporating nanoparticles. This barrier effect is usually attributed to the increase of the diffusion pathways due to nanoclay-induced tortuosity effects. However, the diffusion coefficient was found to be dependent on water concentration, which generally reflects a plasticization effect of water. Besides, at 7 wt% of loading, an unexpected increase of water diffusivity was measured with a time-scale shift of the permeation flux. This was correlated with the formation of preferential diffusion pathways along interfacial regions due to free volumes existing between the EVA matrix and nanoclays as well as the water affinity of microfillers. As a consequence, water mass gain was found to be increased. The water-induced plasticization of sorbed water molecules was also highlighted through sorption kinetics. Eventually, some applications to these films in which water barrier behaviour is required were discussed.
- Published
- 2015
- Full Text
- View/download PDF
39. Effect of hydrolysis on the properties of the copolymers of ethylene-co-vinyl-acetate: DSC and permeation
- Author
-
Yuichi Hirata, Jean-Marc Saiter, A. Hamou, C. Cabot, Emmanuel Bureau, and Stéphane Marais
- Subjects
010302 applied physics ,Materials science ,Mechanical Engineering ,02 engineering and technology ,Permeation ,Polyethylene ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Endothermic process ,Hydrolysis ,chemistry.chemical_compound ,chemistry ,Mechanics of Materials ,Sodium hydroxide ,0103 physical sciences ,Polymer chemistry ,Vinyl acetate ,General Materials Science ,Methanol ,0210 nano-technology ,Glass transition ,Nuclear chemistry - Abstract
As soon as they are separated from their roots, fruits and vegetables exhibit multiple biochemical reactions consuming O2 and producing H2O and CO2. To obtain a controlled atmosphere favorable for food conservation, packages must have high H2O/CO2 and O2/CO2 selectivities. It has been demonstrated that poly(ethylene-co-vinyl-acetate) films (EVA) of various vinyl acetate quantities are promising materials. By changing the content of vinyl-acetate (VA) in polyethylene (PE), it has also been observed that a composition of 70% w/w of VA in PE leads to a completely amorphous material. In this work, pseudo > membranes, based on poly(ethylene-co-vinyl acetate) (EVA) containing 70 wt% of vinyl acetate, have been prepared by a treatment of unilateral hydrolysis using solutions of sodium hydroxide dissolved in a mixture of water and methanol. The influence of this hydrolysis treatment on O2 and H2O permeation properties is investigated. The existence of structural changes as a function of the hydrolysis duration (0–16 h) is checked by means of DSC. Without hydrolysis, a glass transition at Tg = –20 °C with ΔCp ≈ 0.56 J/g/K is obtained. By increasing the hydrolysis time, we find that Tg = constant, ΔCp decreases and an endothermic melting peak (≈125 °C) appears. These results lead to the conclusion that a crystalline phase occurs through hydrolysis. On the other hand, the O2 permeability decreases with the reaction time, while the H2O permeability passes through a maximum for a hydrolysis lasting 30 min.
- Published
- 2003
- Full Text
- View/download PDF
40. Water and toluene barrier properties of a polyamide 12 modified by a surface treatment using cold plasma
- Author
-
Michel Metayer, M. Labbé, Frédéric Dreux, Stéphane Marais, Fabienne Poncin-Epaillard, and Jean-Marc Saiter
- Subjects
010302 applied physics ,Electrolysis of water ,Mechanical Engineering ,Analytical chemistry ,02 engineering and technology ,Permeation ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Toluene ,Gibbs free energy ,chemistry.chemical_compound ,symbols.namesake ,X-ray photoelectron spectroscopy ,Chemical engineering ,chemistry ,Mechanics of Materials ,Permeability (electromagnetism) ,0103 physical sciences ,Polyamide ,symbols ,General Materials Science ,0210 nano-technology ,Polymeric surface - Abstract
CF4 and CO2 plasma treatments have been used to modify the barrier properties of a polyamide 12 (PA12) towards permeant molecules, which present opposing characteristics: water and toluene. The surface modifications were observed by atomic force microscopy, X-ray photoelectron spectroscopy and surface Gibbs function measurements. Both treatments lead to different surfaces; one is rather hydrophobic (with CF4) whereas the other is more hydrophilic (with CO2. The effect of this modification on permeametric properties has been investigated by liquid water and liquid toluene permeation measurements. Our results show opposite effects of the two treatments. CF4 plasma treatment leads to a reduction of water and toluene permeability. With CO2 plasma treatment, in terms of permeation, two different behaviours were observed, an increase and a decrease of permeancy for water and toluene respectively. These results are in full agreement with those obtained for the surface characterization, and confirms change in the polymeric surface affinity for the permeant leading to a variation of the materials permeancy.
- Published
- 2003
- Full Text
- View/download PDF
41. Influence of sandwinds on the durability of polyethylene greenhouse aged under sub-saharan climatic conditions
- Author
-
A. Hamou, Noureddine Hassini, Jean-Marc Saiter, K. Guenachi, Eric Beucher, and Stéphane Marais
- Subjects
010302 applied physics ,Materials science ,Infrared ,Mechanical Engineering ,Mineralogy ,02 engineering and technology ,Polyethylene ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Durability ,Contact angle ,chemistry.chemical_compound ,chemistry ,Mechanics of Materials ,0103 physical sciences ,Microscopy ,Surface roughness ,Erosion ,General Materials Science ,Composite material ,0210 nano-technology ,Visible spectrum - Abstract
Sandwinds have been simulated with an apparatus developed in our laboratory. Infra red and UV visible spectroscopies, contact angle and interferential microscopy investigations have been performed on untreated polyethylene film sample and on samples submitted at 40 °C to a simulated sandwind for times up to 4 hours. The surface roughness is modified, leading to drastic decrease of the ultra-violet visible light transmission. This phenomenon is due to the presence of small sand particles inlaid in the sample surface and due to surface erosion. In the time range of our experiments, no chemical action due to the sandwind is observed.
- Published
- 2002
- Full Text
- View/download PDF
42. Application of random walk model to the glass transition of unsaturated polyester resins cured with different styrene contents
- Author
-
E. Bureau, Stéphane Marais, Allisson Saiter, H. Zapolsky, Jean-Marc Saiter, Laboratoire d’Etude et de Caractérisation des Amorphes et des Polymères (AMME-LECAP EA 4528 International Laboratory), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Groupe de physique des matériaux (GPM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Materials science ,02 engineering and technology ,Dielectric ,010402 general chemistry ,01 natural sciences ,Styrene ,chemistry.chemical_compound ,Fragility ,Materials Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Composite material ,Structural unit ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Unsaturated polyester ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Random walk ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Ceramics and Composites ,Density of states ,0210 nano-technology ,Glass transition - Abstract
Dielectric measurements have been performed on unsaturated polyester resins, cured with different styrene contents. Based on the random walk model (RWM), we have determined, as a function of the styrene content, the width of the density of states kT 0 , the average energy barrier height 〈 E A 〉 that a structural unit must crossover in order to relax, the fragility index α and the value of T c at which qualitative changes in the dynamics occur. The RWM data are in good agreement with the strong-fragile concept.
- Published
- 2002
- Full Text
- View/download PDF
43. Water Diffusion Mechanisms in New Bio-Nanocomposites Based on Polyhydroxyalkanoates/Nanoclays
- Author
-
Jérémie Soulestin, Laurent Lebrun, Eric Dargent, Nadège Follain, Raphaël Crétois, Stéphane Marais, Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie
- Subjects
Water transport ,Materials science ,Nanocomposite ,General Engineering ,Transmission electronic microscopy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Tortuosity ,Polyhydroxyalkanoates ,chemistry.chemical_compound ,Montmorillonite ,chemistry ,Permeability (electromagnetism) ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Water diffusion ,Composite material ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Nanocomposites based on bacterial semi-crystalline polyhydroxyalkanoates, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) or poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and organo-modified montmorillonite nanoclay are prepared by melt processing. All nanocomposites are characterized by X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) and exhibit a mainly intercalated structure. Concerning water transport properties, a decrease of barrier properties for PHBV/nanoclay films is measured due to the affinity of nanoclay to water; whereas for P(3HB-co-4HB)/nanoclay nanocomposites, a decrease of the water permeability is observed relative to the tortuosity effect. Eventually, as a function of nanoclay content, a competition is evidenced between the tortuosity effect and the water sorption induced by nanoclay.
- Published
- 2013
- Full Text
- View/download PDF
44. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres
- Author
-
Sébastien Alix, Stéphane Marais, Claudine Morvan, L. Colasse, Laurent Lebrun, Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Langmuir ,Absorption of water ,Materials science ,food.ingredient ,Polymers and Plastics ,Pectin ,Core (manufacturing) ,02 engineering and technology ,010402 general chemistry ,complex mixtures ,01 natural sciences ,Autoclave ,food ,Ultimate tensile strength ,Materials Chemistry ,Composite material ,ComputingMilieux_MISCELLANEOUS ,Organic Chemistry ,technology, industry, and agriculture ,Sorption ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Gravimetric analysis ,0210 nano-technology - Abstract
The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric.
- Published
- 2013
- Full Text
- View/download PDF
45. Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites
- Author
-
Stéphane Marais, Nadine Tenn, Raphaël Crétois, Serge Bourbigot, Jérémie Soulestin, Nadège Follain, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Économie, des Finances et de l'Industrie [Paris, France], Unité Matériaux et Transformations - UMR 8207 (UMET), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), and Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nanocomposite ,Materials science ,02 engineering and technology ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Exfoliation joint ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Crystallinity ,General Energy ,Differential scanning calorimetry ,Montmorillonite ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Transmission electron microscopy ,Compounding ,Polymer chemistry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; Incorporating Cloisite 30B (C30B) in poly(lactic acid) (PLA) matrix was investigated as functions of the content and of the hydration state of nanoclays. Two series of PLA based nanocomposites were prepared by melt compounding using nanoclays in hydrated state (undried C30B) or preliminary dried (dried C30B). Their structure was characterized by transmission electron microscopy (TEM) observations and X-ray diffraction (XRD) measurements which highlighted the coexistence of exfoliated, intercalated, and aggregated structures. Rheological measurements put forward better degrees of dispersion and of exfoliation for nanocomposites containing undried C30B. From differential scanning calorimetry (DSC) measurements, a slight change in crystallinity was measured owing to the nucleating effect induced by the nanoclays. The transport properties were analyzed from permeation and sorption kinetics. A significant improvement of the water and oxygen barrier properties was obtained, especially for nanocomposites with undried C30B, while a reduction in diffusion was evidenced. This peculiar behavior was correlated to the presence of water molecules included in C30B contributing to a better dispersion and orientation of the nanoplatelets into the PLA matrix.
- Published
- 2013
- Full Text
- View/download PDF
46. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals
- Author
-
Nadège Follain, Gilberto Siqueira, Alain Dufresne, Julien Bras, Sabrina Belbekhouche, Stéphane Marais, Laboratoire Génie des procédés papetiers (LGP2 ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Polymères, biopolymères, membranes (PBM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Polymères Biopolymères Surfaces (PBS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Polyesters ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Nanocomposites ,chemistry.chemical_compound ,Crystallinity ,Differential scanning calorimetry ,X-Ray Diffraction ,Materials Chemistry ,[CHIM]Chemical Sciences ,Cellulose ,Composite material ,ComputingMilieux_MISCELLANEOUS ,Nanocomposite ,Calorimetry, Differential Scanning ,Organic Chemistry ,Temperature ,Chemical modification ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Biomechanical Phenomena ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polycaprolactone ,Nanoparticles ,Acid hydrolysis ,Luffa ,0210 nano-technology - Abstract
Cellulose nanocrystals have been prepared by acid hydrolysis of Luffa cylindrica fibers. The acid-resistant residue consisted of rod-like nanoparticles with an average length an diameter around 242 and 5.2 nm, respectively (aspect ratio around 46). These cellulose nanocrystals have been used as a reinforcing phase for the processing of bio-nanocomposites using polycaprolactone (PCL) as matrix. To promote interfacial filler/matrix interactions the surface of cellulose nanocrystals was chemically modified with n-octadecyl isocyanate (C18H37NCO). Evidence of the grafting was supported by infrared spectroscopy and elemental analysis. X-ray diffraction analysis was used to confirm the integrity of cellulose nanocrystals after chemical modification. Both unmodified and chemically modified nanocrystals were used to prepare nanocomposites. The thermal properties of these materials were determined from differential scanning calorimetry and their mechanical behavior was evaluated in both the linear and non-linear range.
- Published
- 2013
- Full Text
- View/download PDF
47. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties
- Author
-
Camille Lixon-Buquet, Pierre Schaetzel, Yongli Li, Vincent Ratieuville, Stéphane Marais, Laurent Colasse, Quang Trong Nguyen, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire catalyse et spectrochimie (LCS), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)
- Subjects
Materials science ,General Chemical Engineering ,Diffusion ,Fuel cell ,Sorption ,02 engineering and technology ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Proton exchange membrane ,Differential scanning calorimetry ,Membrane ,Chemical engineering ,Ionic conductivity ,Proton transport ,Polymer chemistry ,Electrochemistry ,Water of crystallization ,[CHIM]Chemical Sciences ,Polymer blend ,0210 nano-technology ,Water diffusion - Abstract
International audience; Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid-base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13-34 kJ mol(-1), which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton-water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends. (C) 2013 Elsevier Ltd. All rights reserved.
- Published
- 2013
- Full Text
- View/download PDF
48. Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals
- Author
-
Julien Bras, Stéphane Marais, Nadège Follain, Alain Dufresne, Sabrina Belbekhouche, Gilberto Siqueira, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie des procédés papetiers (LGP2 ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Water activity ,Nanoparticle ,Filtration and Separation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,chemistry.chemical_compound ,Polymer chemistry ,[CHIM]Chemical Sciences ,General Materials Science ,Physical and Theoretical Chemistry ,Cellulose ,Water content ,ComputingMilieux_MISCELLANEOUS ,Water transport ,Nanocomposite ,Percolation threshold ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Permeation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,0210 nano-technology - Abstract
Poly(e-caprolactone) (PCL) based nanocomposite films reinforced by cellulose nanocrystals isolated from Luffa cylindrica were prepared by film casting/evaporation technique in nonaqueous media. The contribution of nanofiller content on the transport properties of PCL matrix was investigated through water sorption and water permeation processes. Besides, the recently-developed long-chain isocyanate grafting on cellulose was applied to L. cylindrica nanocrystals. Its impact on the water transport properties was specifically investigated at a nanoparticle loading higher than percolation threshold. A peculiar behavior against water vapor molecules was exhibited as functions of content, of water activity, and of surface-chemical modification. This behavior was related to the establishment of hydrogen-bonding interactions between nanocrystals during the formation of the three-dimensional cellulose network which contributed to a restriction of matrix chain mobility. For simulating the water sorption measurements, the Park and GAB models were applied to the experimental data. The mathematical parameters were found to agree well with the measured ones. The water content predicted as well as the nanocomposite behavior described by both models were discussed. Regarding water permeation, a barrier effect to water is highlighted by the reduction of the permeability: the nanoscale rod-like morphology of nanocrystals made longer the diffusion path of diffusing molecules by tortuosity effect. Moreover, a dependence between penetrated water concentration and water diffusivity is evidenced.
- Published
- 2013
- Full Text
- View/download PDF
49. Improvement of Water Barrier Properties of Poly(ethylene- co -vinyl alcohol) Films by Hydrophobic Plasma Surface Treatments
- Author
-
Kateryna Fatyeyeva, Nadine Tenn, Fabienne Poncin-Epaillard, Nicolas Delpouve, Nadège Follain, Stéphane Marais, Jean-Marc Valleton, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Groupe de physique des matériaux (GPM), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Vinyl alcohol ,Ethylene ,Plasma surface ,Alcohol ,02 engineering and technology ,Plasma ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,General Energy ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Water barrier ,Polymer chemistry ,Physical and Theoretical Chemistry ,0210 nano-technology ,Tetramethylsilane ,ComputingMilieux_MISCELLANEOUS ,Poly ethylene - Abstract
Poly(ethylene-co-vinyl alcohol) (EVOH) films with two different ethylene contents (29 and 44 mol %) have been treated by hydrophobic plasma (CF4, tetramethylsilane (TMS), CF4/H2, and CF4/C2H2). Con...
- Published
- 2012
- Full Text
- View/download PDF
50. Water Transport Properties of Plasma-Modified Commercial Anion-Exchange Membrane for Solid Alkaline Fuel Cells
- Author
-
Jean Durand, Marc Reinholdt, Stéphane Marais, Nadège Follain, Jérémy Frugier, Stéphanie Roualdes, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut Européen des membranes (IEM), and Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
- Subjects
Diffusion ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,complex mixtures ,7. Clean energy ,01 natural sciences ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Argon ,Chromatography ,Water transport ,Ion exchange ,Sorption ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Membrane ,chemistry ,Chemical engineering ,0210 nano-technology ,Water vapor - Abstract
In the field of low-temperature fuel cells, solid alkaline membrane fuel cells (SAMFCs) appear to be a very promising new fuel cell technology. Nevertheless, commercial hydroxyl-exchange membranes suitable for SAMFCs suffer from some limitations, especially low retention to water at the cathode (where water is required to be reactive in the electrochemical reaction), which weakens fuel cell performances. In this study, the commercial Morgan ADP membrane by Solvay has been modified on the surface by plasma processes using argon or argon/triallylamine as gaseous phases. Plasma-treated and untreated membranes have been characterized in terms of water sorption and diffusion properties performing water vapor sorption measurements. Analysis of sorption isotherms and related modeling from Park model has shown that plasma treatments induce a decrease in water sorption and diffusion abilities without qualitatively affecting the water transport properties. Plasma modification from triallylamine leading to the depos...
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.